Просчитаем стоимость 1 варианта: 1) Один учитель и два родителя = 3 взрослых заплатят за билеты: 3*180=540 (руб.) 2) 15*100=1500 (руб.) - заплатят за билеты 15 школьников. 3) 1500+540=2040 (руб.) - обойдется стоимость для 15 школьников и 3 взрослых всего.
Просчитаем стоимость 2 варианта: 1) 3*180=540 (руб.) - заплатят за билеты 1 учитель и 2 родителя. 2) 10-5=5 (шк.) - заплатят за билет по 100 руб. 3) 5*100=500 (руб.) - заплатят за билеты 5 школьников. 4) 500+800=1300 (руб.) - заплатят за билеты 15 школьников. 5) 540+1300=1840 (руб.) - обойдется стоимость для 15 школьников и 3 взрослых всего. 1840<2040 на 2040-1840=200 рублей.
ОТВЕТ: минимальная сумма в рублях составит 1840 рублей (3 взрослых по 180 руб. + 10 школьников с групповым билетом за 800 руб. + 5 школьников по 100 руб.)
а) Координату х=5 будут иметь все точки , лежащие на прямой , которая параллельна оси ординат и проходит через т.А на оси абсцисс. Любая другая точка координатной плоскости имеет абсциссу отличную от х=5
б) Координату у=-3 будут иметь все точки , лежащие на прямой , которая параллельна оси абсцисс и проходит через т.С на оси ординат. Любая другая точка координатной плоскости имеет ординату отличную от у=-3
рисунок 1 во вложении
Задание 3.
а) На координатной плоскости неравенство х ≥ 4 задаст полуплоскость , которая будет расположена правее прямой х=4. Все точки этой полуплоскости будут иметь абсциссу равную 4 и больше
рисунок 2 во вложении
б) Двойное неравенство 0 ≤ у ≤ 5 задает на координатной плоскости две горизонтальные полосы , которые имееют ординату 0 и 5
рисунок 3 во вложении
Задание 4.
а) у = х;
найдем точки и построим график
х=0, у=0
х=3 , у=3
х=-3, у= -3
б) –3 ≤ х ≤ 3.
неравенство задает на координатной плоскости две вертикальные полосы, которые имею абсциссу 3 и -3
Изобразим множество точек на координатной плоскости
рисунок 4 во вложении
Задание 5
Решение во вложении
Задание 6
Если | x | ≤ 5 , значит -5 ≤ х ≤ 5, т.е. х ϵ [-5 ; 5]
Отметим этот промежуток т.А и т.В на координатной прямой ( рис. 5 во вложении)
Отметим промежуток –7 ≤ x ≤ 1 , т.е. х ϵ [ -7 ; 1] на координатной прямой т.С и т. D
Для того, чтобы определить границы промежутков [-5; 5] и [-7; 1] сравним левые и правые границы этих промежутков. Поскольку -7 < -5, а 5 >1 , то искомое пересечение имеет вид: х ϵ[-5; 1]
1) Один учитель и два родителя = 3 взрослых заплатят за билеты:
3*180=540 (руб.)
2) 15*100=1500 (руб.) - заплатят за билеты 15 школьников.
3) 1500+540=2040 (руб.) - обойдется стоимость для 15 школьников и 3 взрослых всего.
Просчитаем стоимость 2 варианта:
1) 3*180=540 (руб.) - заплатят за билеты 1 учитель и 2 родителя.
2) 10-5=5 (шк.) - заплатят за билет по 100 руб.
3) 5*100=500 (руб.) - заплатят за билеты 5 школьников.
4) 500+800=1300 (руб.) - заплатят за билеты 15 школьников.
5) 540+1300=1840 (руб.) - обойдется стоимость для 15 школьников и 3 взрослых всего.
1840<2040 на 2040-1840=200 рублей.
ОТВЕТ: минимальная сумма в рублях составит 1840 рублей (3 взрослых по 180 руб. + 10 школьников с групповым билетом за 800 руб. + 5 школьников по 100 руб.)
Объяснение:
Задание 2.
а) Координату х=5 будут иметь все точки , лежащие на прямой , которая параллельна оси ординат и проходит через т.А на оси абсцисс. Любая другая точка координатной плоскости имеет абсциссу отличную от х=5
б) Координату у=-3 будут иметь все точки , лежащие на прямой , которая параллельна оси абсцисс и проходит через т.С на оси ординат. Любая другая точка координатной плоскости имеет ординату отличную от у=-3
рисунок 1 во вложении
Задание 3.
а) На координатной плоскости неравенство х ≥ 4 задаст полуплоскость , которая будет расположена правее прямой х=4. Все точки этой полуплоскости будут иметь абсциссу равную 4 и больше
рисунок 2 во вложении
б) Двойное неравенство 0 ≤ у ≤ 5 задает на координатной плоскости две горизонтальные полосы , которые имееют ординату 0 и 5
рисунок 3 во вложении
Задание 4.
а) у = х;
найдем точки и построим график
х=0, у=0
х=3 , у=3
х=-3, у= -3
б) –3 ≤ х ≤ 3.
неравенство задает на координатной плоскости две вертикальные полосы, которые имею абсциссу 3 и -3
Изобразим множество точек на координатной плоскости
рисунок 4 во вложении
Задание 5
Решение во вложении
Задание 6
Если | x | ≤ 5 , значит -5 ≤ х ≤ 5, т.е. х ϵ [-5 ; 5]
Отметим этот промежуток т.А и т.В на координатной прямой ( рис. 5 во вложении)
Отметим промежуток –7 ≤ x ≤ 1 , т.е. х ϵ [ -7 ; 1] на координатной прямой т.С и т. D
Для того, чтобы определить границы промежутков [-5; 5] и [-7; 1] сравним левые и правые границы этих промежутков. Поскольку -7 < -5, а 5 >1 , то искомое пересечение имеет вид: х ϵ[-5; 1]