В решении выше допущено 2 ошибки. Первая ---арифметическая: -3+2=-1, а не -5; вторая, более существенная, связана с неравносильностью преобразований.
Правильный ответ: х=3.
Прежде всего заметим, что при возведении уравнения в квадрат могут появиться новые корни, а именно корни уравнения -(х-1)=sqrt(2x^2-3x–5). Это произойдёт в том случае, если (х-1) < 0, т. е. при x < 1. Если же х-1 >= 0, то корень уравнения (х-1)^2=(sqrt(2x^2-3x–5))^2 будет также корнем исходного уравнения. Таким образом, исходное уравнение эквивалентно не уравнению (х-1)^2=2x^2-3x–5,
а системе (х-1)^2=2x^2-3x–5, x >=1.
Сначала решаем уравнение: (х-1)^2=2x^2-3x–5 2x^2-3x–5-x^2+2x-1=0 x^2-x-6=0 x1=3, x2=-2. Второй корень не удовлетворяет условию x >=1, и, следовательно, не является корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=3, а х-1=-3). Первый корень удовлетворяет условию x >=1, и, следовательно, является также корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=2=х-1).
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
y − x = 0 3x − y = 4
у=х -у=4-3х
у=3х-4
Таблицы:
х -1 0 1 х -1 0 1
у -1 0 1 у -7 -4 -1
Согласно графика, координаты точки пересечения прямых (2; 2)
Первая ---арифметическая: -3+2=-1, а не -5;
вторая, более существенная, связана с неравносильностью преобразований.
Правильный ответ: х=3.
Прежде всего заметим, что при возведении уравнения в квадрат могут появиться новые корни, а именно корни уравнения -(х-1)=sqrt(2x^2-3x–5). Это произойдёт в том случае, если (х-1) < 0, т. е. при x < 1.
Если же х-1 >= 0, то корень уравнения (х-1)^2=(sqrt(2x^2-3x–5))^2 будет также корнем исходного уравнения. Таким образом, исходное уравнение эквивалентно
не уравнению
(х-1)^2=2x^2-3x–5,
а системе
(х-1)^2=2x^2-3x–5,
x >=1.
Сначала решаем уравнение:
(х-1)^2=2x^2-3x–5
2x^2-3x–5-x^2+2x-1=0
x^2-x-6=0
x1=3, x2=-2.
Второй корень не удовлетворяет условию x >=1, и, следовательно, не является корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=3, а х-1=-3).
Первый корень удовлетворяет условию x >=1, и, следовательно, является также корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=2=х-1).
Координаты точки пересечения прямых (2; 2)
Решение системы уравнений х=2
у=2
Объяснение:
Решите графически систему уравнений
y − x = 0
3x − y = 4
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
y − x = 0 3x − y = 4
у=х -у=4-3х
у=3х-4
Таблицы:
х -1 0 1 х -1 0 1
у -1 0 1 у -7 -4 -1
Согласно графика, координаты точки пересечения прямых (2; 2)
Решение системы уравнений х=2
у=2