В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
kdhsjs
kdhsjs
25.07.2022 14:29 •  Алгебра

Каждую грань правильной пирамиды SA1A2...A8 с основанием A1A2...A8 разрешается раскрасить в один из 10 цветов. Сколькими можно раскрасить пирамиду при условии, что все грани будут разного цвета? Раскраски считаются различными, если не получаются друг из друга вращением пирамиды.

Показать ответ
Ответ:
автормемовв
автормемовв
16.01.2021 23:00

ответ: 453600

Объяснение:

1. Раскрасим основание A1A2...A8 в один из 10 цветов. Такую раскраску можно осуществить

2. Раскрасим теперь по очереди боковые грани пирамиды. Для первой грани SA1A2 имеется 10−1=9 вариантов раскраски, для второй грани SA2A3 имеется 10−2=8 вариантов раскраски, и так далее, для 8-й по порядку грани имеется 10−8=2 вариант(-ов, -a) раскраски. Таким образом, всего получаем

M=10(10−1)(10−2)...(10−8)

вариантов раскраски пирамиды.

3. По условию задачи две раскраски считаются одинаковыми, если получаются друг из друга движением. В нашем случае, у пирамиды существует ровно 8 движений (8 поворотов). Потому искомое число раскрасок будет в 8 раз меньше величины M.

Получаем ответ:

10(10−1)(10−2)...(10−8)8=453600.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота