З'ясуємо, як знайти область визначення деяких функцій, заданих формулою.
1. Якщо функція — многочлен, то вона існує при будь-яких значеннях аргумента, тобто її область визначення — всі дійсні числа.
2. Якщо функція задана формулою, яка містить аргумент у знаменнику дробу, то до області визначення функції входять всі дійсні числа, крім тих, які перетворюють знаменник в нуль.
3. Якщо функція задана формулою, яка містить арифметичний квадратний корінь, то до області її визначення входять всі дійсні числа, при яких підкореневий вираз набуває невід'ємних значень.
Область значень функції (множина значень) - усі значення, яких набуває функція.
Функція є парною - якщо для будь-якого х з області визначення функції виконується рівність f(x)=f(-x)
Функція є непарною - якщо для будь-якого х з області визначення функції виконується рівність f(-x)=-f(x)
а) 1/2√196 + 1,5√0,16 = 1/2 * 14 + 1,5 * 0,4 = 7 + 0,6 = 7,6
б)1 - 6√4/9 = 1 - 6*2/3 = 1 - 4 = -3
в)(2√1,5)² = 4 * 1,5 = 6
Далее:
а)√0,16 * 25 = √0,16 * √25 = 0,4 * 5 = 2
б)√8 * √50 = √8*50 = √400 = 20
в)√75/√3 = √75/3 = √25 = 5
г)√3 и 1/16 * 0,0289 =√49/16*0,0289 =√(49*0,0289)/16 = (7*0,17)/4=1,19/4
Далее:
а)x²=9 x =√9 x = 3
б)x²=1/16 x = √1/16 x = 1/4
в)5x² - 125 = 0 5x² = 125 x² = 25 x = √25 x=5
г)(2x - 1)² = 9 √(2x-1)² = √9 2x -1 = 3 2x = 3+1 2x = 4 x = 2
д)x² = (√7 -2√6 - √7 +2√6)²
√x² = корень из всей скобки
x = √7 -2√6 - √7 + 2√6
x = 0
З'ясуємо, як знайти область визначення деяких функцій, заданих формулою.
1. Якщо функція — многочлен, то вона існує при будь-яких значеннях аргумента, тобто її область визначення — всі дійсні числа.
2. Якщо функція задана формулою, яка містить аргумент у знаменнику дробу, то до області визначення функції входять всі дійсні числа, крім тих, які перетворюють знаменник в нуль.
3. Якщо функція задана формулою, яка містить арифметичний квадратний корінь, то до області її визначення входять всі дійсні числа, при яких підкореневий вираз набуває невід'ємних значень.
Область значень функції (множина значень) - усі значення, яких набуває функція.
Функція є парною - якщо для будь-якого х з області визначення функції виконується рівність f(x)=f(-x)
Функція є непарною - якщо для будь-якого х з області визначення функції виконується рівність f(-x)=-f(x)