класс) буду очень благадарен. 1.Определите четность функции:
А) у= 4-2
Б) у =
2.Скольки можно рассадить 3
учеников на 5 стульях? (рассписать формулой)
3.Решите тригонометрическое уравнение:
А) - =0
Б) 1- = 2
4.
5.Решите систему показательных
уравнений:
2. (b-5)(b+10)+(b+6)(b-8)=b²+10b-5b-50+b²+6b-8b-48=2b²+3b-98
Задача
1) 26 * 3 = 78 деталей сделали вдвоём за 3 часа
2) 5 – 3 = 2 часа работал первый дополнительно
3) 108 – 78 = 30 деталей – сделал первый рабочий за 2 часа
4) 30 : 2 = 15 деталей изготавливал ежечасно первый рабочий.
5) 26 – 15 = 11 деталей изготавливал ежечасно второй рабочий.
ответ: 15 дет. ; 11 дет.
Проверка
15 * 5 + 11 * 3 = 108
75 + 33 = 108
108 = 108 верно
Заданный отрезок графиками функций разбивается на 2 участка: левая часть - от заданного предела x=-5π/4 до точки встречи графиков, где график функции синуса выше графика косинуса.
Направо от этой точки график синуса выше графика косинуса.
Это определяет площадь как сумма интегралов разностей функций.
Точка встречи - это значение (-π+(π/4)) = -3π/4.
.
Значения аргумента в заданных пределах:
-1.25π = -3.92699,
-0.75π = -2.35619,
0.25π = 0.785398.
Значения функции синуса в заданных пределах:
0.707107, -0.70711, 0.707107. (это +-√2/2)
Значения функции косинуса в заданных пределах:
-0.70711, -0.70711, 0.707107. (это +-√2/2)
Значения функции косинуса в заданных пределах:
Площадь равна 1.414214 + 2.828427 = 4.242641 = 3√2.
2) y=-x^2-2x+4, y=-x^2+4x+1, y=5.
Заданный отрезок графиками функций разбивается на 2 участка, граничные точки которых надо определить.
Средняя точка - равенство функций y=-x^2-2x+4, y=-x^2+4x+1.
-x^2 - 2x + 4 = -x^2 + 4x + 1,
6х = 3,
х = 3/6 = 1/2.
Левая точка - равенство y=-x^2-2x+4, y=5
-x^2 - 2x + 4 = 5.
-x^2 - 2x -1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*(-1)*(-1)=4-4*(-1)*(-1)=4-(-4)*(-1)=4-(-4*(-1))=4-(-(-4))=4-4=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-(-2/(2*(-1)))=-(-2/(-2))=-(-(-2/2))=-(-(-1))=-1.
Правая точка - равенство y=-x^2+4x+1, y=5.
-x^2 + 4x + 1 = 5.
-x^2 + 4x - 4 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=4^2-4*(-1)*(-4)=16-4*(-1)*(-4)=16-(-4)*(-4)=16-(-4*(-4))=16-(-(-4*4))=16-(-(-16))=16-16=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2. Линия у = 5 находится выше парабол.
Площадь равна: