Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.
1) x^2-y^2=9
x-y=1
1. x=1+y
2. (1+y)^2-y^2=9
1+2y+y^2-y^2=9
1+2y=9
2y=8
y=4
3. x=1+y. x=1+4=5
ответ: (5;4)
2 система:
1) x^2+y^2=13
xy=6
1. x=6/y
2. (6/y)^2 + y^2 = 13
36/y^2 + y^2 = 13 (обе части умножаем на y^2, y не равен нулю)
36+y^4 = 13y^2
y^4-13y^2+36=0
y^2=t
t^2-13t+36=0
D=25
t1=9
t2=4
y^2=9, y1=3, y2= - 3
y^2=4, y3=2, y4= - 2
3. x=6/y. x1=2, x2= -2, x3=3. x4= - 3.
ответ: (2;3) (-2;-3) (3;2) (-3;-2)