В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Elizzzavettta
Elizzzavettta
09.09.2020 07:17 •  Алгебра

Книга алгебра(7 класс) страница 5 номер


Книга алгебра(7 класс) страница 5 номер

Показать ответ
Ответ:
KOTIK22811
KOTIK22811
25.03.2023 04:07

1. Известно, что x=5, y(5)=-4\cdot 5+3=-20+3=\boxed{-17}

2. Известно, что y=0, тогда 0=x-5\Rightarrow \boxed{x=5}

3. Обе точки имеют координаты (x_i; y_i), причем при подставлении этих координат в уравнение функции, мы получаем верное равенство.

Смотрим на точку А: -13= k\cdot 0+b \Rightarrow -13=b\Rightarrow b=-13

Отлично, уравнение известно теперь в таком виде: y=kx-13, в него подставим вторую точку и найдем k.

\displaystyle 0=-\frac{13}{8}\cdot k-13\Rightarrow 13=-\frac{13}{8}\cdot k \bigg|\cdot\bigg(-\frac{8}{13} \bigg) \Rightarrow -8=k\Rightarrow \boxed{k=-8}

4. Решаем аналогично. Точка А: 3 = k\cdot 0+b\Rightarrow b=3

Уравнение уже в виде: y=kx+3

Точка B: \displaystyle 0=\frac{3}{5}\cdot k+3\Rightarrow -3=\frac{3}{5}\cdot k\bigg|\cdot \frac{5}{3} \Rightarrow -5=k\Rightarrow \boxed{k=-5}

5. Условие симметрии относительно прямой y=x такое, что у функции f(x) меняются местами область определения и область значений, то есть подставляя y вместо x мы получаем по итогу x. При взаимно однозначном соответствии области определения и области значений (как в случае прямых) все вообще просто и работает везде.

Что нужно сделать: есть y=2x+1, делаем

\displaystyle x=2y+1\Rightarrow 2y=x-1\Rightarrow \boxed{y=\frac{x}{2}-\frac{1}{2} }

0,0(0 оценок)
Ответ:
Сива11
Сива11
30.10.2020 02:21

Подробное объяснение: в задании номер 1 число 3 в 4 степени возводится в 5 степень. Когда ты видишь что-то наподобие этого, то степени перемножаются: то есть 4 степень умножаем на 5 степень и получаем 20 степень, то есть 3 в 20 степени. Далее, в числителе, видим:

3 {}^{20} \times 3 {}^{3}

Здесь степени тоже умножаюся, потому что умножаются сами числа. Перемножаем и получаем 3 в 23 степени. Ну и затем остается сократить то, что получилось:

\frac{3 {}^{23} }{3 {}^{22} }

Сокращаем и получаем:

\frac{3}{1} = 3

Задание номер 2.

Ну, тут все просто, тут надо правильно перемножить, как на фото. С умножением степеней ситуация та же, что и в 1 задании.

Надеюсь


решить задания 1 и 2, только с пояснениями, не одну цифру , очень буду благодарна.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота