В первый раз увеличение зарплаты составило 21,83%.
Пояснення:
Допустим, что зарплата до первого повышения была А денежных единиц.
Пусть у% - это увеличение зарплаты в первый раз в процентах. Обозначим х = у%/100% - относительное увиличение зарплаты. Зарплата увеничилась на А×х денежных единиц и стала А + А × х = А × ( 1 + х ) денежных единиц. Значит зарплата стала в ( 1 + х ) раз больше.
Во второй раз увеличение зарплаты в процентах было больше в два раза, чем в первый раз. Теперь зарплата стала в ( 1 + 2х ) раз больше. ВТОРОЕ ПОВЫШЕНИЕ РАСЧИТЫВАЕТСЯ ИСХОДЯ ИЗ ЗАРПЛАТЫ, ПОЛУЧЕННОЙ ПОСЛЕ ПЕРВОГО ПОВЫШЕНИЯ. ТАК, КАК ПОВЫШАЮТ ЗАРПЛАТУ ИСХОДЯ ИЗ ИМЕЮЩЕЙСЯ НА ДАННЫЙ МОМЕНТ СУММЫ, А НЕ ТОЙ, КОТОРАЯ БЫЛА ПРИ ЦАРЕ ГОРОХЕ.
Зарплата увеничилась на А × ( 1 + х ) × 2х денежных единиц и стала А × ( 1 + х ) + А × ( 1 + х ) × 2х = А × ( 1 + х ) × ( 1 + 2х )
В результате двух этапов увеличения зарплаты, она составила 7/4 от первоначальной, тоесть 7/4 × А. Имеем уравнение:
А × ( 1 + х ) × ( 1 + 2х ) = 7/4 × А
Сократим А с двух сторон.
( 1 + х ) × ( 1 + 2х ) = 7/4
1 + х + 2х + 2х^2 = 1,75
2х^2 + 3х - 0,75 = 0
Решаем квадратное уравнение.
Дискриминант равен:
D = 9 - 4 × 2 × (-0,75) = 15
Корни уравнения равны:
x1 = ( -3 + sqrt(D) ) / 4 = 0,21825
x2 = ( -3 - sqrt(D) ) / 4 = -1,71825
Второй корень отбрасываем, так как зарплата выросла, а не уменьшилась.
Первое увеличение зарплаты составило 0,21825 × 100% = 21,83%
Проверка:
( 1 + 0,21825 ) × ( 1 + 2 × 0,21825 ) = 7/4
1,21825 × 1,4365 = 7/4
1,75 × 4 = 7
7 = 7
Пусть зарплата до первого повышения была 10 000 денежных единиц.
Відповідь:
В первый раз увеличение зарплаты составило 21,83%.
Пояснення:
Допустим, что зарплата до первого повышения была А денежных единиц.
Пусть у% - это увеличение зарплаты в первый раз в процентах. Обозначим х = у%/100% - относительное увиличение зарплаты. Зарплата увеничилась на А×х денежных единиц и стала А + А × х = А × ( 1 + х ) денежных единиц. Значит зарплата стала в ( 1 + х ) раз больше.
Во второй раз увеличение зарплаты в процентах было больше в два раза, чем в первый раз. Теперь зарплата стала в ( 1 + 2х ) раз больше. ВТОРОЕ ПОВЫШЕНИЕ РАСЧИТЫВАЕТСЯ ИСХОДЯ ИЗ ЗАРПЛАТЫ, ПОЛУЧЕННОЙ ПОСЛЕ ПЕРВОГО ПОВЫШЕНИЯ. ТАК, КАК ПОВЫШАЮТ ЗАРПЛАТУ ИСХОДЯ ИЗ ИМЕЮЩЕЙСЯ НА ДАННЫЙ МОМЕНТ СУММЫ, А НЕ ТОЙ, КОТОРАЯ БЫЛА ПРИ ЦАРЕ ГОРОХЕ.
Зарплата увеничилась на А × ( 1 + х ) × 2х денежных единиц и стала А × ( 1 + х ) + А × ( 1 + х ) × 2х = А × ( 1 + х ) × ( 1 + 2х )
В результате двух этапов увеличения зарплаты, она составила 7/4 от первоначальной, тоесть 7/4 × А. Имеем уравнение:
А × ( 1 + х ) × ( 1 + 2х ) = 7/4 × А
Сократим А с двух сторон.
( 1 + х ) × ( 1 + 2х ) = 7/4
1 + х + 2х + 2х^2 = 1,75
2х^2 + 3х - 0,75 = 0
Решаем квадратное уравнение.
Дискриминант равен:
D = 9 - 4 × 2 × (-0,75) = 15
Корни уравнения равны:
x1 = ( -3 + sqrt(D) ) / 4 = 0,21825
x2 = ( -3 - sqrt(D) ) / 4 = -1,71825
Второй корень отбрасываем, так как зарплата выросла, а не уменьшилась.
Первое увеличение зарплаты составило 0,21825 × 100% = 21,83%
Проверка:
( 1 + 0,21825 ) × ( 1 + 2 × 0,21825 ) = 7/4
1,21825 × 1,4365 = 7/4
1,75 × 4 = 7
7 = 7
Пусть зарплата до первого повышения была 10 000 денежных единиц.
После первого повышения на 21,83% она стала:
10 000 × ( 1 + 0,218246 ) = 12 182,46 денежных единиц.
После второго повышения на 2 × 21,83% она стала:
12 182,46 × ( 1 + 2 × 0,218246 ) = 12 182,46 × 14 364,92 = 17 500 денежных единиц.
17 500 = 7/4 × 10 000
17 500 × 4 = 7 × 10 000
70 000 = 70 000
№ 1.
1) 40 · 0,5 = 20 км - проедет мотоциклист за полчаса;
2) 60 - 40 = 20 км/ч - скорость сближения при движении вдогонку;
3) 20 : 20 = 1 ч - время движения автомобиля.
ответ: через 1 час после своего выезда автомобиль догонит мотоцикл.
№ 2.
Пусть х кг - масса сплава (100%).
Хром - 15% = 0,15х кг
Никель - 0,5% = 0,005х кг
Железо - 100% - (15 + 0,5)% = 100% - 15,5% = 84,5% = 0,845х кг
Железа на 2,78 кг больше, чем хрома. Уравнение:
0,845х - 0,15х = 2,78
0,695х = 2,78
х = 2,78 : 0,695
х = 4
ответ: 4 кг - масса листа.