ответ:І їм потрібне місце, де може зберігатися та дозрівати нектар, доти, доки не перетвориться на мед.
Постає проблема серйозної економ Чудове вирішення цієї проблеми - побудувати маленькі комірчинки, достатньо великі, для того щоб бджола могла залізти туди, і які могли б водночас слугувати для зберігання меду: такі собі особисті медові банки бджіл.
Далі потрібно вирішити, з чого будувати ці комірчинки.
У бджоли не має дзьоба чи якогось пристосування, щоб підіймати речі, але вони можуть виробляти віск, хоча це й тяжка робота.
Бджола має з'їсти 8 унцій меду для того, щоб виробити 1 унцію воску.
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2x
Знаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1
Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1
Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
ответ:І їм потрібне місце, де може зберігатися та дозрівати нектар, доти, доки не перетвориться на мед.
Постає проблема серйозної економ Чудове вирішення цієї проблеми - побудувати маленькі комірчинки, достатньо великі, для того щоб бджола могла залізти туди, і які могли б водночас слугувати для зберігання меду: такі собі особисті медові банки бджіл.
Далі потрібно вирішити, з чого будувати ці комірчинки.
У бджоли не має дзьоба чи якогось пристосування, щоб підіймати речі, але вони можуть виробляти віск, хоча це й тяжка робота.
Бджола має з'їсти 8 унцій меду для того, щоб виробити 1 унцію воску.
Объяснение:
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2xЗнаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).