а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.
б). Да, 123...9899 делится на 9.
Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.
Цифра 0:
10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.
Цифра 1:
1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.
Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).
Теперь нужно узнать, делится ли число 1234..9899 на 9.
Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.
Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.
Для этого найдем искомую сумму по формуле арифметической прогрессии:
Так как получилось разделить нацело, то 1234...9899 делится на 9.
Выражение можно переписать как (x-y)(x+y)(x²+y²+2z). Если х и y имеют разную четность, то все выражение нечетное (т.к. сумма и разность чисел разной четности - нечетные).. Если x и y оба четные, то все выражение делится на 8 (каждая скобка делится на 2). Если х и y оба нечетные, то опять все выражение делится на 8 (т.к. сумма и разность нечетных чисел - четные). Если х=1, y=0, то все выражение равно 2z+1, т.е. a может быть любым нечетным числом. Если х=2, y=0, то все выражение равно 8(2+z), т.е. а может быть любым числом кратным 8, кроме 8. И вообще, все это выражение не может равняться 8, т.к.если выражение кратно 8 и х≠y, то x-y≥2 и x+y≥2, а значит (x-y)(x+y)(x²+y²+2z)≥4(4+2z)≥16. Таким образом, а может быть любым нечетным числом, а их в интервале от 1 до 4000 всего 4000/2=2000 штук, любым кратным 8, кроме самой 8, а их всего 4000/8-1=499. Итого, существует 2499 значений а.
а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.
б). Да, 123...9899 делится на 9.
Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.
Цифра 0:
10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.
Цифра 1:
1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.
Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).
Теперь нужно узнать, делится ли число 1234..9899 на 9.
Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.
Для этого найдем искомую сумму по формуле арифметической прогрессии:
Так как получилось разделить нацело, то 1234...9899 делится на 9.
Если х и y имеют разную четность, то все выражение нечетное (т.к. сумма и разность чисел разной четности - нечетные)..
Если x и y оба четные, то все выражение делится на 8 (каждая скобка делится на 2).
Если х и y оба нечетные, то опять все выражение делится на 8 (т.к. сумма и разность нечетных чисел - четные).
Если х=1, y=0, то все выражение равно 2z+1, т.е. a может быть любым нечетным числом.
Если х=2, y=0, то все выражение равно 8(2+z), т.е. а может быть любым числом кратным 8, кроме 8. И вообще, все это выражение не может равняться 8, т.к.если выражение кратно 8 и х≠y, то x-y≥2 и x+y≥2, а значит (x-y)(x+y)(x²+y²+2z)≥4(4+2z)≥16.
Таким образом, а может быть любым нечетным числом, а их в интервале от 1 до 4000 всего 4000/2=2000 штук, любым кратным 8, кроме самой 8, а их всего 4000/8-1=499. Итого, существует 2499 значений а.