На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
4sin²x + sin2x = 3 ⇔ 4sin²x + 2sinx*cosx = 3(sin²x+cos²x) = 0 ⇔
sin²x + 2sinx*cosx - 3cos²x =0 ⇔ || : cos²x ≠ 0 ||
* * * однородное уравнение второго порядка Au²+Bu*v +Cv² * * *
tg²x + 2tgx - 3 =0 ( квадратное уравнение относительно tgx )
tgx₁ = 1 ; tgx₂ = - 3
x₁ = π/4 +πn , n ∈ ℤ ;
x₂ =arctg(-3) + πk ,k ∈ ℤ || arctg(-3) = -arctg(3) ||
ответ: π/4 +πn , n ∈ ℤ ; - arctg(3) + πk ,k ∈ ℤ .
4sin²x + sin2x = 3 ⇔ 4(1 - cos2x) /2 + sin2x = 3⇔ 1sin2x -2cos2x = 1 ⇔
√5 ( (1 /√5)*sin2x - (2/√5) *cos2x ) = 1 * * * √ (1²+2²) = √5 * * *
* * * 1 /√5 = cosφ ; 2/√5 =sinφ ; 2 = tgφ * * *
√5( sin2x*cosφ - cos2x *sinφ ) = 1 ⇔ √5( sin(2x - φ) ) = 1
sin(2x - φ) = 1/√5 ⇒ 2x - φ = (-1)ⁿarcsin( 1/√5) + πn , n∈ ℤ
x = 0,5φ + 0,5(-1)ⁿarcsin( 1/√5) + πn , n∈ ℤ
* * * φ = arccos(1 /√5) ; φ= arcsin(2/√5) ; φ= arctg2 * * *
На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
тогда хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3