х³-5х²-2х+24=0 Корни уравнения надо искать среди делителей свободного слагаемого. Делители числа 24: 1;2;3;4;6;12;24 -1;-2;-3;-4;-6;-12;-24 Проверкой убеждаемся, что х=2 - корень уравнения В самом деле. (-2)³-5·(-2)²-2·(-2)+24=0 -8-20+4+24=0 -28+28=0 - верно. Значит, левая часть раскладывается на множители, один из которых (х-(-2))=х+2 Делим -х³-5х²-2х+24 | x+2 x³+2x² x²-7x+12
_-7x²-2x+24 -7x²-14x
_12x+24 12x+24
0
х³-5х²-2х+24=0 (x+2)(x²-7x+12)=0 x+2=0 или х²-7х+12=0 х=-2 х=(7-1)/2=3 или х=(7+1)/2=4 О т в е т. -2; 3; 4.
ответ: 4,2 м.
Объяснение:
1 комната длина в 1,5 раза больше ширины
2 комната -- длина --- 7,2 м.
общая площадь равна 56,7 м².
обозначим ширину через х м.
длина 1 комнаты --- 1,5х
Площадь 1 комнаты --- 1,5х²
Площадь второй комнаты --- 7,2х
1.5х²+7,2х=56,7;
1.5x²+7.2x-56.7=0;
a=1.5; b=7.2; c=-56.7.
D=b²-4ac=(7.2)²-4*1.5*(-56.7)=51.84+340.2=392.04 (19.8²)
x1=4.2; x2= - 9 - не соответствует условию задачи
Ширина комнат равна 4,2 м.
Проверим:
(1,5*4,2+7,2) * 4,2= 13,5*4,2=56, 7 м². Всё верно!
Корни уравнения надо искать среди делителей свободного слагаемого.
Делители числа 24:
1;2;3;4;6;12;24
-1;-2;-3;-4;-6;-12;-24
Проверкой убеждаемся, что х=2 - корень уравнения
В самом деле.
(-2)³-5·(-2)²-2·(-2)+24=0
-8-20+4+24=0
-28+28=0 - верно.
Значит, левая часть раскладывается на множители, один из которых (х-(-2))=х+2
Делим
-х³-5х²-2х+24 | x+2
x³+2x² x²-7x+12
_-7x²-2x+24
-7x²-14x
_12x+24
12x+24
0
х³-5х²-2х+24=0
(x+2)(x²-7x+12)=0
x+2=0 или х²-7х+12=0
х=-2 х=(7-1)/2=3 или х=(7+1)/2=4
О т в е т. -2; 3; 4.