Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
Школьные Знания.com
Какой у тебя вопрос?
Sabina05 avatar
Sabina05
21.02.2012
Алгебра
5 - 9 классы
ответ дан • проверенный экспертом
периметр прямоугольника равен 22 см, а его площадь равна 30см (в квадрате) Найдите стороны прямоугольника
2
ПОСМОТРЕТЬ ОТВЕТЫ
ответ, проверенный экспертом
4,0/5
46
Svet1ana
главный мозг
4.2 тыс. ответов
8.4 млн пользователей, получивших
а - длина прямоугольника
b - ширина прямоугольника
Р=22 см
S=30 см²
а - ? см
b - ? см
(1)
(2)
из формулы площади прямоугольника (2) выводим формулу нахождения ширины
подставляем в формулу периметра прямоугольника (1)
/·a
умножаем на а для того, чтобы избавиться от знаменателя
подставим в уравнение данные P и S
Квадратное уравнение имеет вид:
Считаем дискриминант:
Дискриминант положительный
Уравнение имеет два различных корня:
Следовательно, стороны равны 6см и 5см соответственно
ответ: 6см и 5см стороны прямоугольника.
Проверка:
Р=2(а+b)=2(6+5)=2·11=22 (см)
S=a·b=6·5=30 (м²)
Объяснение:
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.