Контрольна робота № 3. Тема: Многочлени. Алгебра, 7 клас Варіант 4
1. Запишіть будь-який многочлен у стандартному вигляді, до складу якого входять п’ять одночленів.
2. Напишіть приклад будь-якого многочлена шостого степеня.
3. Запишіть многочлен 5(а – 6) + 8а – 1 у стандартному вигляді.
4. Запишіть приклад многочлена, всі доданки якого мають спільні множники.
5. Розкладіть на множники:
а) 6(а +k) – а(а +k); б) (х – 3у) х + 6х – 18у.
6. Винесіть за дужки спільний множник:
а) 4х2 – 12у3; б) 7m + 14m2 – 21m3.
7. Виконайте множення:
а) (5х + у)(6 – 4х + у2); б) 5n(2n + n3 – 7).
8. Спростіть вираз:
а) 7с(5 – с) – (с + 3)(8 + с); б) –0,3а(5а2 + 1)(4 – 9а2).
Рассшифруем условие задачи
Итак, участок АС:
Это расстояние мотоциклист проехал за время t час, со скоростью 90 км/час
тогда автомобиль проехал это расстояние за t+1 час со скоростью х км/час
Так как они встретились в точке С то их пути равны: получили первое уравнение
90*t=(t+1)*х
Далее мотоциклист поехал обратно ( и как не странно АС=СА) значит времени затратил тоже t час. И за это время автомобиль доехал до B
Значит на весь путь автомобиль потратил t+1+t=2t+1 час и двигался со скоростью х км/час и проехал путь 300км
Получили второе уравнение
x*(2t+1)=300
решим нашу систему
из первого уравнение выразим х
подставим во второе
.
Значит время на путь от АС 2 часа
Расстояние 90*2=180 км
Время наполнения бассейна первой трубой-12часов
Время наполнения бассейна второй трубой-3 часа
Объяснение:
Обозначим объём бассейна за 1(единицу), а
- время наполнения первой трубой за (х)
- время наполнения второй трубой за (у)
Тогда:
- производительность наполнения первой трубой 1/х
- производительность наполнения второй трубой 1/у
Время наполнения бассейна обеими трубами составляет 2 24/60=2,4 час или:
1 : (1/х+1/у)=2,4
1 : (у+х)/ху=2,4
ху/(у+х)=2,4
ху=(у+х)*2,4
ху=2,4у+2,4х (1)
Время наполнения 1/3 бассейна составляет:
1/3 : 1/х=х/3
Время наполнения 2/3 бассейна составляет:
2/3 : 1/у=2у/3
Время наполнения таким образом составляет 6 часов или:
х/3+2у/3=6
(х+у)/3=6
х+у=3*6
х+у=18 (2)
Решим получившуюся систему уравнений (1) и (2):
ху=2,4у+2,4х
х+у=18
Из второго уравнения найдём значение (х) и подставим его в первое уравнение:
х=18-у
(18-у)*у=2,4у+2,4*(18-у)
18у-2у²=2,4у+43,2-4,8у
2у²-20,4+43,2=0 сократим на 2, получим:
у²-10,2+21,6=0
у1,2=(10,2+-D)/2*1
D=√(10²-4*1*21,6)=√( 104,04-86,4)=√17,64=4,2
у1,2=(10,2+-4,2)/2
у1=(10,2+4,2/2
у1=14,4/2
у1=7,2 - не соответствует условию задачи
у2=(10,2-4,2)/2
у2=6/2
у2=3 (час) - время наполнения бассейна второй трубой)
время наполнения бассейна первой трубой составляет:
18-2*3=12 час