Пусть одна диагональ равна 2х, другая - 2у, тогда 2х+2у=24 и х+у-12, откуда у=12-х.
Диагонали ромба пересекаются под прямым углом, таким образом, площадь ромба состоит из 4-х прямоугольны треугольников с катетами х и у, т.е. площадь ромба S=4*0.5xy=2xy.
Подставим сюда у=12-х и получим S=24x-2x^2.
Найдём максимум этой функции. S'= 24-4x.
Стационарная точка: 24-4х=0 х=6
При х=7 S'<0; при х=5 S'>0, следовательно при х=5 имеем максимум S.
у=12-х=12-6=6.
Тогда Smax=2*6*6=72.
Интересно, что получился квадрат с диагоналями, равными 12.
Пусть х (км/ч) - собственная скорость лодки, тогда х + 2 (км/ч) - скорость лодки по течению реки; t = 2,4 ч - время х - 2 (км/ч) - скорость лодки против течения реки; t = 3,6 ч - время Уравнение: (х - 2) * 3,6 = (х + 2) * 2,4 3,6х - 7,2 = 2,4х + 4,8 3,6х - 2,4х = 4,8 + 7,2 1,2х = 12 х = 12 : 1,2 х = 10 (км/ч) - собственная скорость лодки (10 - 2) * 3,6 + (10 + 2) * 2,4 = 57,6 (км) - расстояние, которое преодолела лодка за всё время движения. ответ: 57,6 км.
Пусть одна диагональ равна 2х, другая - 2у, тогда 2х+2у=24 и х+у-12, откуда у=12-х.
Диагонали ромба пересекаются под прямым углом, таким образом, площадь ромба состоит из 4-х прямоугольны треугольников с катетами х и у, т.е. площадь ромба S=4*0.5xy=2xy.
Подставим сюда у=12-х и получим S=24x-2x^2.
Найдём максимум этой функции. S'= 24-4x.
Стационарная точка: 24-4х=0 х=6
При х=7 S'<0; при х=5 S'>0, следовательно при х=5 имеем максимум S.
у=12-х=12-6=6.
Тогда Smax=2*6*6=72.
Интересно, что получился квадрат с диагоналями, равными 12.
х + 2 (км/ч) - скорость лодки по течению реки; t = 2,4 ч - время
х - 2 (км/ч) - скорость лодки против течения реки; t = 3,6 ч - время
Уравнение: (х - 2) * 3,6 = (х + 2) * 2,4
3,6х - 7,2 = 2,4х + 4,8
3,6х - 2,4х = 4,8 + 7,2
1,2х = 12
х = 12 : 1,2
х = 10 (км/ч) - собственная скорость лодки
(10 - 2) * 3,6 + (10 + 2) * 2,4 = 57,6 (км) - расстояние, которое преодолела лодка за всё время движения.
ответ: 57,6 км.
Пояснения:
36 мин = 36/60 ч = 6/10 ч = 0,6 ч