Контрольная работа №6 по теме «Линейная функция»
I часть (графики функций в этой части не строим)
Какая из точек не принадлежит графику функции y = -3 + х?
1) (0; -3)
2) (3; 0)
3) (-5; -8)
4) (-3; 6)
Найдите значение функции у = 4,7х - 6,3 при х = 2.
Найдите значение аргумента, при котором значение функции у = 187 - 21х равно - 23.
Найдите координаты точки пересечения прямых у = – х и у = х - 8.
Найдите координаты точки пересечения графика линейной функции у = - 2х + 6 с осями координат.
II часть
Постройте график линейной функции у = -2х + 1. С графика найдите:
а) значение у, если х = 3;
б) значение х, если у = -1.
Задайте линейную функцию у = кх формулой, если известно, что ее график параллелен прямой у = - 4х + 7 (график строить не нужно).
График функции y=x² на картинке.
ТЕОРИЯ (читать всем!):
Чтобы узнать, принадлежит ли точка графику функции, нужно подставить в уравнение графика данные нам координаты точки.
Теперь смотрим: если уравнение обращается в верное равенство, значит, точка принадлежит графику; если нет, то точка не принадлежит графику функции.
Координата точки — А(x;y)
а) A(-10;-100). Подставим координату в уравнение графика функции y=x²:
-100 = (-10)²
-100 = (-10)·(-10)
-100 ≠ 100
Значит, точка А(-10;-100) не принадлежит графику функции y=x².
ответ: не принадлежит.
б) B(8;64). Подставим координату в уравнение графика функции y=x²:
64 = 8²
64 = 8·8
64 = 64
Значит, точка B(8;64) принадлежит графику функции y=x².
ответ: принадлежит.
в) С(-6;36). Подставим координату в уравнение графика функции y=x²:
36 = (-6)²
36 = (-6)·(-6)
36 = 36
Значит, точка C(-6;36) принадлежит графику функции y=x².
ответ: принадлежит.
точка A(-10;-100) — не принадлежит графику функции.
точка B(8;64) — принадлежит графику функции.
точка С(-6;36) — принадлежит графику функции.
1) =((n+7)²-(n-7)²)((n+7)²+(n-7)²)=[(n+7-(n-7_)(n+7+n-7)]*[n²+14n+49+n²-14n+49]=14*2n(2n²+98)=48n*2(n²+49)=56n(n²+49) полученное выражение кратно 56, т.к. 56 делится на 56 без остатка
2)
a) (56b-7a)/(9a²-72ab)=7(8b-a)/9a(a-8b)=-7(a-8b)/9a(a-8b)=-7/9a
а во 2 номере под буквой б) как мне кажется вместо 40, должно стоять 4 и тогда решение следующее:
[(x+4)³+(x-4)³]/x(x²+48)=[(x+4+x-4)((x+4)²-(x+4)(x-4)+(x-4)²)]/x(x²+48)=[x²(x²+8x+16-x²+16+x²-8x+16)]/x(x²+48)=x²(x²+48)/x(x²+48)=x
в)
если бы в числителе и знаменателе была бы одна и та же переменная, то это решалось бы так: = [(b-2)*(b^4+2b^3+4b^2+8b+16)]/(b^4+2b^3+4b^2+8b+16)=b-2
3) при n=6 данное выражение является целым числом, т.к число будет целым в случае, когда в знаменателе 1, а это тогда , когда n-5 =1⇒ n=6
4)
a) = [(3x-x)/(3x-y)]-[2xy/(9x²-y²)]=[(3x-x)(3x+y)-2xy]/(9x²-y²)=(9x²+pxy-3x²-xy-2xy)/(9x²-y²)=6x²/(9x²-y²)
б) =[9-6a-(a-3)²]/(a³-27)=(9-6a-a²+6a-9)/(a³-27)=-a²/(a³-27)
ну а тождество , надеюсь уж сам решишь?