В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
schegolewasofyp087l0
schegolewasofyp087l0
31.12.2021 09:25 •  Алгебра

Контрольная работа «Формулы сокращенного умножения» 7 класс
Вариант 2
1. Представьте в виде многочлена выражение:
1) (с - 6) 2) (2а – 3b)?
3) (5 - а)(5 + а) 4) (7х + 10y)(10у - 7x)
2. Разложите на множители:
1) в° — 49 2)ь? + 8b + 16
3) 100-9x2
4) 4х2 – 20xy + 25y?
3. Упростите выражение:
1) (х-2)(х + 2) - (х - 5)?
2) (x - 2) + (х - 1)(х + 1)
4. Решите уравнение (х - 3)? - (х + 1)2 = 12
5. Представьте в виде произведения выражение
(4b - 9) - (3b + 8)?
+​

Показать ответ
Ответ:
Kaldomova2014
Kaldomova2014
19.02.2023 07:24
Уравнение квадратной параболы в общем виде: у = ах² + вх + с
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3      (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а     (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у =  2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)
0,0(0 оценок)
Ответ:
Lunitoes
Lunitoes
17.02.2020 17:23
\dfrac{x-x_0}{l} = \dfrac{y-y_0}{m} = \dfrac{z-z_0}{n} - уравнение прямой, проходящей через точку (x_0;\ y_0;\ z_0), с направляющим вектором \{l;\ m;\ n\}
\dfrac{x+1}{3} = \dfrac{y-2}{-1} = \dfrac{z}{4} - уравнение прямой, проходящей через точку (-1;\ 2;\ 0), с направляющим вектором \vec{s}=\{3;\ -1;\ 4\}

Ax+By+Cz+D=0 - уравнение плоскости с нормальным вектором \{A;\ B;\ C\}
3x+y-z+2=0 - уравнение плоскости с нормальным вектором \vec{n}=\{3;\ 1;\ -1\}

Искомое уравнение плоскости имеет вид:
Ax+By+Cz+D=0

Так как искомая плоскость проходит через заданную прямую, то она проходит и через точку (-1; 2; 0):
-A+2B+D=0

Так как искомая плоскость проходит через заданную прямую, то можно считать, что она параллельна заданной прямой. В этом случае, направляющий вектор прямой и нормальный вектор искомой плоскости перпендикулярны, а значит их скалярное произведение равно 0:
\vec{s} \cdot \vec{N} =0
3A-B+4C=0

Так как искомая плоскость перпендикулярная заданной плоскости, то их нормальные векторы перпендикулярны, то есть скалярное произведение этих векторов равно 0:
\vec{n} \cdot \vec{N} =0
3A+B-C=0

Составляем систему:
\left\{\begin{array}{l} -A+2B+D=0 \\ 3A-B+4C=0 \\ 3A+B-C=0 \end{array}
Складываем второе и третье уравнение:
6A+3C=0 \\\
2A+C=0 \\\ C=-2A
Подставляем выражение для С в третье уравнение:
3A+B+2A=0 \\\ B=-5A
Подставляем выражение для В в первое уравнение:
-A-10A+D=0
\\\
D=11A

Искомое уравнение плоскости:
Ax-5Ay-2Az+11A=0
\\\
x-5y-2z+11=0
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота