Теперь пусть а ≠ 1, тогда у нас получается квадратное уравнение (1-a)x^2-2x+4a=0 Находим его дискриминант:
D=b^2-4ac=4-4*4a*(1-a)=4-16a+16a^2
Рассмотрим квадратных трехчлен 16a^2-16a+4 = (4a-2)^2 Так как квадрат есть число неотрицательное, то выражение (4a-2)^2 всегда неотрицательное. Значит дискриминант исходного уравнения всегда неотрицательный, значит, возможны как один корень, так и два.
Сначала рассмотрим случай, если a=1.
(1-1)x^2-2x+4=0
-2x+4=0
2x=4
x=2
Теперь пусть а ≠ 1, тогда у нас получается квадратное уравнение (1-a)x^2-2x+4a=0
Находим его дискриминант:
D=b^2-4ac=4-4*4a*(1-a)=4-16a+16a^2
Рассмотрим квадратных трехчлен 16a^2-16a+4 = (4a-2)^2
Так как квадрат есть число неотрицательное, то выражение (4a-2)^2 всегда неотрицательное. Значит дискриминант исходного уравнения всегда неотрицательный, значит, возможны как один корень, так и два.
x1= (-b+√D)/2a = (2+4a-2)/2(1-a) = 4a/2(1-a) = 2a/(1-a) = -2a/(a-1)
x2= (-b-√D)/2a = (2-(4a-2))/2(1-a)=(2-4a+2)/2(1-a) = (4-4a)/2(1-a) = (2-2a)/(1-a) = 2(1-a)/(1-a) = 2
ответ: 2; -2a/(a-1)
Пусть t - время, которое ехал от А до С мотоциклист и от С до В автомобиль
t+1,5 - время которое ехал до С автомобиль
300:(t+t+1,5)=300:(2t+1,5) - скорость автомобиля
расстояние от А до С - 60*t или 300*(t+1,5):(2t+1,5)
Приравняем и получим уравнение:
60t= 300(t+1.5)/ 2t+1.5
Приведем к общему знаменателю и с учетом того, что знаменатель не может быть равен 0 получим:
60t(2t+1,5)=300(t+1,5)
120t^2+90t=300t+450
120t^2-210t-450=0
12t^2-21t-45=0
4t^2-7t-15=0
Решим это уравнение, получим 2 корня t=-1,25 и t=3
t=-1,25 - не подходит, т.к. время не может быть меньше 0.
Значит расстояние от А до С равно 60*3=180 (км)
ответ 180 км