контрольная работа по алгебре (ВСЕ СТЕПЕНИ ДРОБНЫЕ)
1. Представьте в виде степени с рациональным показателем.
а) b^1/3 * b^-1/9
б)(числитель) y^2/3 * y^ -2 / (значинатель) y^1/3
в) (b^3/4)^4*b^-3/2
2.Представьте выражение в виде степени с дробным показателем.
^5√y∛y^2
3. У выражение.
(x^1/2+y^1/4)(x^1/2-y^1/4)+(y^3/2)^1/3
Буду очень благодарен!
В решении.
Объяснение:
Задание на разность квадратов:
а² - в² = (а - в)*(а + в).
1) При каких значениях переменной x выражение (x-3)²-14² равно 0? Если таких значений несколько.
(x-3)²-14²=0
(х - 3 - 14)*(х - 3 + 14) = 0
(х - 17)*(х + 11) = 0
х - 17 = 0
х₁ = 17;
х + 11 = 0
х₂ = -11.
При х = 17 и х = -11 данное выражение равно нулю.
2) При каких значениях переменной x выражение ( x-9)²-8² равно 0? Если таких значений несколько.
( x-9)²-8²=0
(х - 9 - 8)*(х - 9 + 8) = 0
(х - 17)*(х - 1) = 0
х - 17 = 0
х₁ = 17;
х - 1 = 0
х₂ = 1.
При х = 17 и х = 1 данное выражение равно нулю.
3) При каких значениях переменной x выражение ( x-7)²-3² равно 0? Если таких значений несколько.
( x-7)²-3²=0
(х - 7 - 3)*(х - 7 + 3) = 0
(х - 10)*(х - 4) = 0
х - 10 = 0
х₁ = 10;
х - 4 = 0
х₂ = 4.
При х = 10 и х = 4 данное выражение равно нулю.
4) При каких значениях переменной x выражение ( x-9)²-17² равно 0? Если таких значений несколько.
( x-9)²-17²=0
(х - 9 - 17)*(х - 9 + 17) = 0
(х - 26)*(х + 8) = 0
х - 26 = 0
х₁ = 26;
х + 8 = 0
х₂ = -8.
При х = 26 и х = -8 данное выражение равно нулю.
В решении.
Объяснение:
Решить квадратные уравнения:
1) х²-х-6= 0
D=b²-4ac =1+24=25 √D= 5
х₁=(-b-√D)/2a
х₁=(1-5)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(1+5)/2
х₂=3.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) х²+3х=4
х²+3х-4 =0
D=b²-4ac =9+16=25 √D= 5
х₁=(-b-√D)/2a
х₁=(-3-5)/2
х₁= -8/2
х₁= -4;
х₂=(-b+√D)/2a
х₂=(-3+5)/2
х₂=2/2
х₂=1.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3) х²=2х+8
х²-2х-8 =0
D=b²-4ac =4+32=36 √D= 6
х₁=(-b-√D)/2a
х₁=(2-6)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(2+6)/2
х₂=8/2
х₂=4.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
4) 25х²-1=0 (неполное квадратное уравнение).
25х² = 1
х² = 1/25
х = ±√1/25
х₁ = -1/5;
х₂= 1/5.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.