В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
oljkejik
oljkejik
23.08.2021 04:41 •  Алгебра

Контрольная работа по теме «Функции и их свойства. ».
Вариант 1.
1.Дана функция f(x)=3-2x. При каких значениях аргумента f(x)=0, f(x) 0? Является ли эта функция возрастающей или убывающей? Сделать чертеж.

Показать ответ
Ответ:
hussrav98
hussrav98
21.05.2020 17:06
1) -0,5x^4=x-4
  Можно сделать графически.
  Левая часть:  y = -0,5x⁴     
  График - квадратичная парабола, ветви направлены вниз.
  Правая часть: y = x - 4
  График - прямая линия, не параллельная осям координат. Пересекает параболу в двух точках.
  ответ:  уравнение имеет 2 действительных корня.

2)  y=(x-2)^2+4 на отрезке [0;3]
  Квадратичная функция, ветви направлены вверх. Наименьшим значением будет вершина параболы.
Координаты вершины параболы:    х=2 (из уравнения функции), у = 4.

Подставить границы интервала в уравнение функции и выбрать наибольшее:
y = (x - 2)² + 4 = (0 - 2)² + 4 = 8
y = (x - 2)² + 4 = (3 - 2)² + 4 = 5

Наибольшее значение функции на отрезке [0; 3]    y = 8 в точке x = 3.
Наименьшее значение функции на отрезке [0; 3]    y = 4 в точке  x = 2.
0,0(0 оценок)
Ответ:
epakurtdinova
epakurtdinova
21.05.2020 17:06

\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Объяснение:

Рассмотрим сначала первое неравенство системы.

Начнем с ОДЗ:

log_3^2x+10,\;=\;x0\\log_3x+30,\;x\dfrac{1}{27}\\x0\\x+5\ne0,\;=\;x\ne-5\\=x\in\left(\dfrac{1}{27};+\infty\right)

Продолжим решение:

\dfrac{lg(log_3^2x+1)-lg(log_3x+3)}{x+5}\ge0\\\dfrac{lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)}{x+5}\ge0

1)

lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)=0,\;=\;\dfrac{log_3^2x+1}{log_3x+3}=1\\\\=log_3^2x+1=log_3x+3,\;=\;log_3^2x-log_3x-2=0

Замена: t=log_3x.

t^2-t-2=0\\t^2+t-2t-2=0\\t(t+1)-2(t+1)=0\\(t+1)(t-2)=0\\t=-1\\t=2

Обратная замена:

log_3x=-1\\x=\dfrac{1}{3}\\\\log_3x=2\\x=9

С учетом ОДЗ оба корня подходят.

2)

x+5\ne0\\x\ne-5

С учетом ОДЗ получим, что решение неравенства:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)

Теперь перейдем ко второму неравенству системы:

Понятно, что сначала нужно написать ОДЗ.

0.5x0,\;=\;x0\\(0.5x)^{6^x}0,\;=\;x0\\=x0

Продолжим решение:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Заметим, что данное неравенство хорошо раскладывается на множители:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Решим неравенство по методу интервалов.

1)

\sqrt[4]{6}-6^x=0\\6^x=6^{\frac{1}{4}}\\x=\dfrac{1}{4}

2)

36-6^x-log_60.5x=0\\log_60.5x=-6^x+36

Введем функции f(x)=log_60.5x и g(x)=-6^x+36. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно, log_61=-36+36,\;=\;0=0, верно. Так, мы решили это уравнение, получив, что его корень x=2.

Тогда решение неравенства с учетом ОДЗ:

x\in\left(\dfrac{1}{4};\;2\right)

Итого имеем:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)\\x\in\left(\dfrac{1}{4};\;2\right)

Найдем пересечение:

x\in\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Задание выполнено!

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота