Контрольная работа по теме «Функции».
Постройте график функции
y = −0,6x - 3
У=4х
Найдите точки пересечения функции у= - 2х+2 с осями координат.
Постройте график функции y = 2x – 1 Пользуясь графиком, найдите:
1) значение функции, если значение аргумента
равно 3; −1; 0,5;
2) значение аргумента, при котором значение функции равно 2; −2; 0;
3) значения аргумента, при которых функция принимает положительные значения.
При каком значении k график функции y = kx + 2 проходит через точку D (6; −16)
y кг кислоты содержится в одном кг второго раствора, тогда во втором растворе будет содержаться 8y кг кислоты
65% кислоты означает, что в одном кг раствора содержится 0,65 кг кислоты
12x+8y=0,65×(12+8)
обозначим равные массы z кг
zx+zy=0,6×(z+z)
zx+zy=0,6×2z
x+y=1,2
12x+8y=13
x=1,2-y
12(1,2-y)+8y=13
14,4-12y+8y=13
-4y=-1,4
y=0,35
в одном кг второго раствора содержится 0,35 кг кислоты, тогда во втором растворе будет 0,35×8=2,8 кг
а₁, а₂, а₃, где а₂ =а₁ + д; или а₁ = а₂ - д;(1) а₃ = а₂ + д;(2)
по условию: а₁+ а₂ + а₃ = 30 (3), но сумма трех членов равна также: (а₁ + а₃)·3:2 = 30, ⇒ а₁ + а₃ = 20 (4). Сравнивая (3) и (4) (или вычитая из (3) (4)), получим: а₂ =10;
2. По условию: (а₁ - 5); (а₂ - 4); а₃ - геометрическая прогрессия.
Исходя из ее свойств (а₂ - 4)/(а₁ - 5) = а₃/(а₂ - 4) или, т.к. а₂ =10 и ⇒ а₂ - 4 = 6; 6/(а₁ - 5) = а₃/6 (5).
Преобразуем (5) и выразим а₁ и а₃ через а₂: пригодятся выражения (1) и (2).
а₃·(а₁ - 5) = 36 ; (а₂+д)·(а₂ -д -5) =36, Вставив а₂ = 10, получим: (10+д)·(10 - д - 5) =36; (10+д)·(5 - д) = 36;
50 + 5д -10д - д² = 36; д² + 5д - 14 = 0;
д₁ = (-5 + √(25+56):2 = (-5+9):2 = 2
(т.к. по условию прогрессия возрастающая, отрицательный д₂ на берем)
тогда а₁ = а₂ - д = 10 - 2 = 8; а₃ = а₂ +д =10 + 2 = 12;
Прогрессия наша: 8, 10, 12
Проверка: (а₂-4)/(а₁-5) = 12/(а₂-4) = 6:3=12:6, и новая прогрессия (3,6,12) геометрическая.