В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
violagugu
violagugu
31.10.2022 02:45 •  Алгебра

Контрольная работа
степенная функция. корень n-й степени.
вариант 1
1.вычислите:
1)3 32 + — 27+1;
3) {/0,0081 - 16;
2) 812;
2.решите уравнение:
1)x5 = 17; 2)2 = -2; 3) у = 27.
3.найдите значение выражения: 17 – 73 - 17 + 73.
4.является ли четной или нечетной функция?
1)f(x)=5x°;
2)f(x)=x+2х.
5.проходит ли график функции y=x^ через точку а(-5; — 125).
6.найти корни уравнения 0,3y - 2,4=0.​

Показать ответ
Ответ:
Вова1337228
Вова1337228
11.04.2023 14:15

Система линейных уравнений с двумя неизвестными

x + y = 5

2x - 3y = 1

Система линейных ур-ний с тремя неизвестными

2*x = 2

5*y = 10

x + y + z = 3

Система дробно-рациональных уравнений

x + y = 3

1/x + 1/y = 2/5

Система четырёх уравнений

x1 + 2x2 + 3x3 - 2x4 = 1

2x1 - x2 - 2x3 - 3x4 = 2

3x1 + 2x2 - x3 + 2x4 = -5

2x1 - 3x2 + 2x3 + x4 = 11

Система линейных уравнений с четырьмя неизвестными

2x + 4y + 6z + 8v = 100

3x + 5y + 7z + 9v = 116

3x - 5y + 7z - 9v = -40

-2x + 4y - 6z + 8v = 36

Система трёх нелинейных ур-ний, содержащая квадрат и дробь

2/x = 11

x - 3*z^2 = 0

2/7*x + y - z = -3

Система двух ур-ний, содержащая куб (3-ю степень)

x = y^3

x*y = -5

Система ур-ний c квадратным корнем

x + y - sqrt(x*y) = 5

2*x*y = 3

Система тригонометрических ур-ний

x + y = 5*pi/2

sin(x) + cos(2y) = -1

Система показательных и логарифмических уравнений

y - log(x)/log(3) = 1

x^y = 3^12

Объяснение:

0,0(0 оценок)
Ответ:
timursharipov2
timursharipov2
19.04.2023 19:45

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота