Сомневаюсь, что в 5-9 классе изучают производную функции |x|, поэтому решим аналитически: Найдём точку смены знака модуля: 2x + 4 = 0, x = -2 Получается, что на отрезке [-3;-2] функция убывает, а на отрезке [-2;3] функция возрастает. Причем возрастает симметрично относительно прямой x = -2, поэтому в точке x = 3 будет наибольшее значение функции. f(3) = 9. Наибольшее значение функции = 9. Так как минимальное значение функции y = |2x+4| - это 0, то отнимая от функции 1, получаем, что минимальное значение = -1.
Найдём точку смены знака модуля: 2x + 4 = 0, x = -2
Получается, что на отрезке [-3;-2] функция убывает, а на отрезке [-2;3] функция возрастает. Причем возрастает симметрично относительно прямой x = -2, поэтому в точке x = 3 будет наибольшее значение функции.
f(3) = 9.
Наибольшее значение функции = 9.
Так как минимальное значение функции y = |2x+4| - это 0, то отнимая от функции 1, получаем, что минимальное значение = -1.
9 - (-1) = 10
ответ: 10
1) 0 и 1
2)- 1,5
3)-6, одна целая пять двенадцатых
4)-2 и одна целая одна шестая
5)-четыре целых одна треть
6) - 9 и - 2
Объяснение:
х2 – х в квадрате?
1)у = х2 - x
х2 - x=0
х(х-1)=0
х=0 х-1=0
х=1
2)у = х2 + 3
х2 + 3=0
х2=-3
х=-3/2= - 1,5
3)y = 12х2 - 17х +6
12х2 - 17х +6=0
х(12х-17)=-6
х=-6 12х-17=0
12х=17
х=17/12= одна целая пять двенадцатых
4)у = -6х2 + 7x - 2
-6х2 + 7x - 2=0
-х(6х-7)=2
-х=2 6х-7=0
х=-2 6х=7
х=7/6=одна целая одна шестая
5)y = 3x? - 5х + 8 (как я полагаю, тут вместо знака вопроса двойка?!)
3x2- 5х + 8=0
х(3х-5)=-8
х=-8 3х-5=8
3х=13
х=13/3=четыре целых одна треть
6)y = 2х2 - 7х + 9
2х2 - 7х + 9=0
х(2х-7)=-9
х=-9 2х-7=-9
2х=-9+7
2х=-2