1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
Все деревни будут связаны друг с другом через центр.
Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога,
тогда рассуждаем так.
Мы проводим от каждой из 25 деревень дороги ко всем 24.
Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А.
Значит, количество дорог надо разделить на 2.
25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6)
Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно.
Корни я нашел с Вольфрам Альфа.
1)ΔABD Ф
АС² = AD² + CD²=a²+a² = 2a²
AC = a√2
CO=a√2/2
2) ΔSCO
SC² = SO² + CO²
a² = SO² + 2a²/4
SO² = a² - 2a²/4= 2a²/4
SO = a√2/2
CO = SO= OD=OA=OB
ΔSOC,ΔSOD,ΔSOA,ΔSOB - равнобедренные, прямоугольные
3)SO продолжим до пересечения со сферой. Появилась точка S1
4)∠SCS1 - вписанный . Он опирается на диаметр, значит,∠SCS1 = 90°
5) Δ SCS1 - прямоугольный с углом CSO = 45°⇒
∠CS1O = 45°⇒ΔSCS1 - равнобедренный⇒SC= S1C⇒
⇒CO - высота в нём, биссектриса и медиана⇒О - середина SS1⇒O- центр сферы.