2sinxcosx-sinx-cosx=3 2sinxcosx-(sinx+cosx)=3 sinx+cosx=a⇒1+2sinxcosx=a²⇒2sinxcosx=a²-1 a²-1-a=3 a²-a-4=0 D=1+16=17 a1=(1-√17)/2⇒sinx+cosx=(1-√17)/2 sinx+sin(π/2-x)=(1-√17)/2 2sinπ/4cos(x-π/4)=(1-√17)/2 cos(x-π/4)=(1-√17)/2√2<-1 нет решения a2=(1+√17)/2 cos(x-π/4)=(1+√17)/2√2>1 нет решения ответ нет решения
|(5х-2(у+4)=0
|(6(2х+3)-у=41
Раскроем скобки:
|5х-2у-8 =0
|12х- у+18=41
Из первого уравнения выразим у через х
5х-2у-8 =0
2у=5х-8
у=(5х-8):2
Подставим это значение во второе уравнение
12х- (5х-8):2+18=41
Умножим обе части на 2
24х-5х+8+36=82
19х=82-44
19х=38
х=2
у=(5*2-8):2
у=1
Эта же система уравнений решается и методом сложения:
|(5х-2(у+4)=0
|(6(2х+3)-у=41
Раскрываем скобки
|5х-2у-8 =0
|12х- у+18=41
Умножим второе уравнение на -2
|5х-2у-8 =0
|-24х+2у-36=-82
Сложим уравнения и получим:
-19х-44=-82
-19х=-38
х=2
5*2-2у-8 =0
10-2у-8=0
2у=2
у=1
(sinx+cosx)(sin²x-sinxcosx+cos²x)=2sinxcosx+sin²x+cos²x)
(sinx+cosx)(1-((sinx+cosx)²-1)/2)=(sinx+cosx)²
sinx+cosx=a
a(1-(a²-1)/2)=a²
a(1-(a²-1)/2)-a²=0
a(1-(a²-1)/2-a)=0
1)a=0⇒sinx+cosx=0/cosx⇒tgx+1=0⇒tgx=-1⇒x=-π/4+πk,k∈z
2)1-(a²-1)/2 -a=0/*2
2-a²+1-2a=0
a²-2a-3=0
a1+a2=-2 U a1*a2=-3
a)a1=1⇒sinx+cosx=1
2sinx/2cosx/2+cos²x/2-sin²x/2-sin²x/2-cos²x/2=0
2sinx/2cosx/2-2sin²x/2=0
2sinx/2*(cosx/2-sinx/2)=0
sinx/2=0⇒x/2=πk⇒x=2πk
cosx/2-sinx/2=0/cosx/2
1-tgx/2=0⇒tgx/2=1⇒x/2=π/4+πk⇒x=π/2+2πk,k∈z
b)sinx+cosx=-3
2sinx/2cosx/2+cos²x/2-sin²x/2+3sin²x/2+3cos²x/2=0
2sin²x/2+2sinx/2cosx/2+4cos²x/2/2cos²x/2
tg²x/2+tgx/2+2=0
tgx/2=b
b²+b+2=0
D=1-8=-7<0 нет решения
ответ:
x=-π/4+πk,k∈z
x=π/2+2πk,k∈z
2sinxcosx-sinx-cosx=3
2sinxcosx-(sinx+cosx)=3
sinx+cosx=a⇒1+2sinxcosx=a²⇒2sinxcosx=a²-1
a²-1-a=3
a²-a-4=0
D=1+16=17
a1=(1-√17)/2⇒sinx+cosx=(1-√17)/2
sinx+sin(π/2-x)=(1-√17)/2
2sinπ/4cos(x-π/4)=(1-√17)/2
cos(x-π/4)=(1-√17)/2√2<-1 нет решения
a2=(1+√17)/2
cos(x-π/4)=(1+√17)/2√2>1 нет решения
ответ нет решения