Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
А) Частная производная по х: zₓ'=((x+2y)*y²)ₓ'=(xy²+2y³)ₓ'=(xy²)ₓ'+(2y³)ₓ'=y²+0=y² Частная производная по у (при переписывании вместо а надо писать у, в предложенных индексах нет такой буквы, потому использую а: zₐ'=((x+2y)*y²)ₐ'=(xy²+2y³)ₐ'=(xy²)ₐ'+(2y³)ₐ'=2xy+6y²
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
zₓ'=((x+2y)*y²)ₓ'=(xy²+2y³)ₓ'=(xy²)ₓ'+(2y³)ₓ'=y²+0=y²
Частная производная по у (при переписывании вместо а надо писать у, в предложенных индексах нет такой буквы, потому использую а:
zₐ'=((x+2y)*y²)ₐ'=(xy²+2y³)ₐ'=(xy²)ₐ'+(2y³)ₐ'=2xy+6y²
в) zₓ'=(9(x-y²)⁴)ₓ'=9*((x-y²)⁴)ₓ'*(x-y²)ₓ'=9*4*(x-y²)³*1=36(x-y²)³
zₐ'=((9(x-y²)⁴)ₐ'=9*((x-y²)⁴)ₐ'*(x-y²)ₐ'=9*4*(x-y²)³*(-2y)=-72y(x-y²)³
б) zₓ'=(cos(2x+e^y))ₓ'=(cos(2x+e^y))ₓ'*(2x+e^y)ₓ'=-sin(2x+e^y)*2=-2sin(2x+e^y)
zₐ'=(cos(2x+e^y))ₐ'=(cos(2x+e^y)ₐ'*(2x+e^y)ₐ'=-sin(2x+e^y)*e^y