Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
Длина сада 175 м
Ширина сада 140 м
Объяснение:
х - длина сада
у - ширина сада
2,45 га = 24500 (м кв)
По условию задачи периметр сада 630 метров
Система уравнений:
2(х+у)=630
х*у=24500
Во втором уравнении выразим х через у и подставим выражение в первое уравнение:
х=24500/у
2(24500/у)+2у=630
49000/у+2у=630
Избавляемся от дробного выражения, умножаем все части уравнения на у:
49000+2у²=630у
2у²-630у+49000=0/2 делим на 2 для удобства вычислений:
у²-315у+24500=0, квадратное уравнение, ищем корни:
у₁,₂=(315±√99225-98000)/2
у₁,₂=(315±√1225)/2
у₁,₂=(315±35)/2
у₁=140 х₁=24500/140=175
у₂=175 у₂=24500/175=140
Так как по условию х - длина участка, а у - ширина,
решение системы уравнений х=175
у=140
Проверка:
175 * 140 = 24500 (м кв)= 2,45 га
2*(175+140)=630 (м) изгородь сада, периметр. Всё верно.
для меня это самое понятное... надеюсь
Объяснение:
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
х2 + х — 2 = 0.