В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Nemo24
Nemo24
24.07.2021 22:12 •  Алгебра

Корни квадратного уравнения x²+px+q=0 являются целыми числами. найти p и q, если p+q=112. , .

Показать ответ
Ответ:
ZigFinde
ZigFinde
19.08.2020 20:28
X^2 + px + q = 0
p + q = 112; q = 112 - p
D = p^2 - 4q = p^2 - 4(112 - p) = p^2 + 4p - 448 = p^2 + 4p + 4 - 452 = (p+2)^2 - 452
x1 = [-p - √((p+2)^2 - 452)]/2
x2 = [-p + √((p+2)^2 - 452)]/2
Корни - целые числа, поэтому D = (p+2)^2 - 452 = n^2 - точный квадрат.
Решить такое можно только подбором, причем число (p+2)^2 должно кончаться
на 1 (11 - 2 = 9) или на 6 (6 - 2 = 4).
То есть (p+2) может кончаться на 1, 4, 6 или 9
Подбирать имеет смысл среди чисел от 22^2 = 484 (21^2 = 441 < 452) до
229^2 (230^2 - 229^2 = 459 > 452).
А учитывая ограничение на последнюю цифру, проверяем от 24^2 до 229^2.
И я таки нашел единственный корень!
(p+2)^2 = 114^2 = 12996, D = 12996 - 452 = 12544 = 112^2
p = 112, q = 0
Это уравнение x^2 + 112x = 0
Его корни x1 = 0; x2 = -112
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота