Пусть 10a+b - двузначное число Впишем между его цифрами ноль, получим трёхзначное число 100a+b По условию, оно в 9 раз больше исходного числа, т.е. 100a+b=9(10a+b) 100a+b=90a+9b 100a-90a=9b-b 10a=8b a=8b:10 a=0,8b
при b=1 a=0,8*1=0,8 - не цифра при b=2 a=0,8*2=1,6 - не цифра при b=3 a=0,8*3=2,4 - не цифра при b=4 a=0,8*4=3,2 - не цифра при b=5 a=0,8*5=4 - цифра 45 - искомое число (45*9=405) при b=6 a=0,8*6=4,8- не цифра при b=7 a=0,8*7=5,6 -не цифра при b=8 a=0,8*8=6,4 -не цифра при b=9 a=0,8*9=7,2 -не цифра *** Для понимания хода решения и рассуждений показаны все варианты перебора
Итак, существует только одно двузначное число, обладающее указанными свойствами. Оно равно 45 ответ: 45
2) Найти значение производной f(x) =x³ в точке с абциссой x0=1.
Решение:
f'(x) =(x³)' =3x²
при х=1
f'(1) =3*1² =3
ответ: 3
3) Найдите угловой коэффициент касательной, проведённый к графику функции f(x)=3x³+2x-5 в его точке с абциссой х0=2.
Решение: Угловой коэффициент касательной к графику функции в точке хо равен производной функции в точке хо. Найдем производную. f'(x)=(3x³+2x-5)'=(3x³)'+(2x)'-(5)' =3*3x² +2-0 =9x²+2 Найдем значение производной в точке хо f'(2) = 9*2²+2 =36+2=38
ответ: 38
4) Найдите промежутки возрастания функции f(x)=-3x²-36x.
Найдем критические точки приравняв производную к нулю
f'(x)=0 -6x-36 =0 6x=-36 x=-6 На числовой прямой отобразим эту точку и определим знаки производной по методу подстановки. Например при х=0 f'(0) =-36<0 + 0 - -----------!----------- -6
Функция возрастает на промежутке (-∞;-6) так как производная больше нуля
Иначе можно определить интервал возрастания сразу решив неравенство f'(x)>0 -6x-36>0 6x+36<0 6x<-36 x<-6 ответ: (-∞;-6)
Впишем между его цифрами ноль, получим трёхзначное число 100a+b
По условию, оно в 9 раз больше исходного числа, т.е.
100a+b=9(10a+b)
100a+b=90a+9b
100a-90a=9b-b
10a=8b
a=8b:10
a=0,8b
при b=1 a=0,8*1=0,8 - не цифра
при b=2 a=0,8*2=1,6 - не цифра
при b=3 a=0,8*3=2,4 - не цифра
при b=4 a=0,8*4=3,2 - не цифра
при b=5 a=0,8*5=4 - цифра 45 - искомое число (45*9=405)
при b=6 a=0,8*6=4,8- не цифра
при b=7 a=0,8*7=5,6 -не цифра
при b=8 a=0,8*8=6,4 -не цифра
при b=9 a=0,8*9=7,2 -не цифра
*** Для понимания хода решения и рассуждений показаны все варианты перебора
Итак, существует только одно двузначное число, обладающее указанными свойствами. Оно равно 45
ответ: 45
Решение:
y'=(cos x)' = -sinx;
y'=(tg x)'=.
ответ: -sinx;
2. f(x)= 2x²+tg x ; f(x)= 4cos x+3
Решение:
f'(x)= (2x²+tg x)' = (2x²)'+(tg x)' =4x+
f'(x)= (4cos x+3)' = (4cos x)' +(3)' = -4sinx+0 =-4sinx
ответ: 4x+ ; -4sinx
2) Найти значение производной f(x) =x³ в точке с абциссой x0=1.
Решение:
f'(x) =(x³)' =3x²
при х=1
f'(1) =3*1² =3
ответ: 3
3) Найдите угловой коэффициент касательной, проведённый к графику функции f(x)=3x³+2x-5 в его точке с абциссой х0=2.
Решение:
Угловой коэффициент касательной к графику функции в точке хо
равен производной функции в точке хо.
Найдем производную.
f'(x)=(3x³+2x-5)'=(3x³)'+(2x)'-(5)' =3*3x² +2-0 =9x²+2
Найдем значение производной в точке хо
f'(2) = 9*2²+2 =36+2=38
ответ: 38
4) Найдите промежутки возрастания функции f(x)=-3x²-36x.
Решение:
Найдем производную функции
f'(x)=(-3x²-36x)' =(-3x²)'-(36x)' =-3*2x - 36 =-6x-36
Найдем критические точки приравняв производную к нулю
f'(x)=0
-6x-36 =0
6x=-36
x=-6
На числовой прямой отобразим эту точку и определим знаки производной по методу подстановки. Например при х=0 f'(0) =-36<0
+ 0 -
-----------!-----------
-6
Функция возрастает на промежутке (-∞;-6) так как производная больше нуля
Иначе можно определить интервал возрастания сразу решив неравенство
f'(x)>0
-6x-36>0
6x+36<0
6x<-36
x<-6
ответ: (-∞;-6)