Краткий тезисный Конспект урока
1. Актуализация знаний учащихся.
Повторение по вопросам:
1) Какие уравнения называются квадратными?
2) Как решать квадратные уравнения?
3) Как решать дробно-рациональные уравнения?
4) Напишите формулу дискриминанта.
5) Запишите формулу нахождения корней квадратного уравнения.
б) Как решить квадратные уравнения по теореме Виета.
2. Решим квадратное уравнение: х* + 2x – 8 = 0
D = b2 — 4ас
D = 22+ 4*1*8= 36 = 6?
— b + yь? — 4ас
2а
х =
V6
— 2-6
х =
=-1+
Учебные задания
1. Решить уравнение: 1) х2 – 5x -4 =10;
2) 2x – 3х2 + 8 = -1- бх; 3) х = 2х2 + 7 = -1 – 5x;
2.Найти корни дробно-рационального уравнения:
No37 (1,3,5)
3.Составьте квадратное уравнение по его корням: No32(1).(2,4,7,8,9)
1. Если в произведении двух чисел первый множитель увеличить на 1, а
второй уменьшить на 1, то произведение увеличится на 2011. Как
изменится произведение исходных чисел, если, наоборот, первый
множитель уменьшить на 1, а второй увеличить на 1?
ответ. Уменьшится на 2013.
Решение. Пусть изначально были числа x и y (с произведением xy ). После того как
первый множитель увеличили на 1, а второй уменьшили на 1, получилось
(x 1)( y 1) = xy y x 1.
Произведение увеличилось на 2011, то есть y x 1= 2011 или y x = 2012 . Если же
первый множитель уменьшить на 1, а второй увеличить на 1, получится
(x 1)( y 1) = xy y x 1.
Заметим, что
xy y x 1= xy ( y x) 1= xy 2012 1= xy 2013 .
То есть произведение уменьшилось на 2013.
2. Даны ненулевые числа x, y и z. Чему может равняться значение выражения
(
||
−
||
) ∙ (
||
−
||
) ∙ (
||
−
||
)
ответ. 0.
Решение. Докажем, что выражение, стоящее по крайней мере в одной из скобок,
равно нулю. Выражение, стоящее в первой скобке, принимает нулевое значение, если
x и y одного знака. Аналогично для второй и третьей скобок. Но среди ненулевых
чисел x, y и z обязательно найдутся либо два положительных числа, либо два
отрицательных. А значит, хотя бы один из трех множителей равен нулю. Поэтому все
произведение равно нулю.
3. Сравнить числа:
9 9 100
1
. . .
5 2 5 3
1
5 1 5 2
1
5 0 5 1
1
и
100
1
. ответ обосновать!
ответ. Числа равны.
Решение. Справедливо равенство
1
1 1
( 1)
1
n n n n
. Применяя его к сумме дробей,
получим
100
1
100
1
5 0
1
100
1
9 9
1
. . .
5 2
1
5 1
1
5 1
1
5 0
1
.
4. Сумма двух положительных чисел и сумма их кубов являются
рациональными числами. Можно ли утверждать, что
а) сами числа рациональны? б) сумма их квадратов рациональна?
ответ. а) Нет. б) Да, можно.
Указание. а) В качестве примера можно взять числа
a 2 1, b 2 1 .
б) Пусть числа
x a b
и
3 3
y a b
рациональны. Тогда
3 ( )
3 3 3
x a b ab a b = y 3x ab.
Отсюда
x
x y
ab
3
3
– рациональное число. Поэтому число
a b (a b) 2ab 2 2 2
также
рационально.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.