Крайне заранее
1. Представьте в виде многочлена:
1) (x - 7)^2=
2) (10 + 4c)^2=
2. Разложите на множители:
1) 2p - 3p^3=
2) 21aв - 14в^2=
3) 3x^2 - 12=
4) 50d - 2a^2d
3. Представьте в виде произведения:
1) 3x^2 - 6xy + 3y^2
2) -a^2 + 10ad - 25d^2
4. Решите уравнение:
1) x^2 - 1/4=0
2) 4x^2 - 25=0
3) 1 + 25x^2=0
Раскрываем скобки. Для этого, значение перед скобками умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. То есть получаем:
2 * 1 - 2 * sin ^ 2 x = 1 - sin x;
2 - 2 * sin ^ 2 x = 1 - sin x;
Перенесем все значения выражения на оду сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
2 * sin ^ 2 x - sin x + 1 - 2 = 0;
2 * sin ^ 2 x - sin x - 1 = 0;
1) sin x = 1;
x = pi/2 + 2 * pi * n, где n принадлежит Z;
2) sin x = - 1/2;
x = (- 1) ^ n * 7 * pi/6 + pi * n, где n принадлежит Z.
Объяснение:
1.В
Диагонали ромба не равны, они в точке пересечения делятся по полам.
2.
Зная что сумма внутренних углов четырехугольника 360° составим уровнение:
110+110+х+х=360
220+2х=360
2х=360-220
2х=140°
Х=70°
ответ:В
3.
S=a²
Увеличим в два раза:
S=(2a)²=4a²
ответ:Б, увеличится в 4 раза.
4.
Синус-отношение противолежайщего катета к гипотенузе.
По теореме Пифагора найдём гипотенузу:
5²+12²=25+144=169
√169=13
Синус равен-5/13
ответ:а
5.
Сначала найдём сумму внутренних углов в пятиугольнике:
180(n-2)=180(5-2)=180*3=540
Составим уровнение:
2х+4х+х+3х+8х=540
18х=540
Х=30
8*30=240°
ответ:В
6.
Найдем гипотенузу первого треугольника:
6²+8²=36+64=100
√100=10
Подобный ему треугольник в три раза больше него значит и катет будет в три раза больше:
6*3=18см
ответ:а
7.
Проведем две высоты и по теореме Пифагора найдём его:
10²-8²=100-64=36
√36=6
Найдем площадь трапеции:
S=Lh
L-средняя линия
h-высота
Найдем среднюю линию:
L=(4+20)÷2=24÷2=12
Подставляем:
S=12*6=72
ответ:72см²
8.
15²=9*АС
225=9*АС
АС=25(гипотенуза)
По теореме Пифагора найдём катет:
25²-15²=625-225=400
√400=20
Найдем площадь:
S=1/2*15*20=150
ответ:150см²