По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
следующий: b1*q
третий: b1*q² (q > 0)
b1 + b1*q + b1*q² = 21
b1*(1+q+q²) = 21 ---> b1 = 21 / (1+q+q²)
(1 / b1) + (1 / (b1*q)) + (1 / (b1*q²)) = 7/12
(1 / b1)*(1 + (1/q) + (1/q²)) = 7/12
((1+q+q²) / 21)*((q²+q+1) / q²) = 7/12
(1+q+q²)² = (7/12) * 21q²
((1+q+q²) / q)² = 49/4
(1+q+q²) / q = 7/2 или (1+q+q²) / q = -7/2
2+2q+2q² = 7q или 2+2q+2q² = -7q
2q²-5q+2 = 0 или 2q²+9q+2 = 0
D=25-16=3² D=81-16=65
q1 = (5-3)/4 = 0.5 q3 = (-9-√65)/4 < 0
q2 = (5+3)/4 = 2 q4 = (-9+√65)/4 < 0
1) q = 1/2 --- убывающая последовательность
b1 = 21 / (1+0.5+0.25) = 21 / 1.75 = 12
b2 = 12*0.5 = 6
b3 = 6*0.5 = 3 их сумма = 21
(1/12) + (1/6) + (1/3) = (1/12) + (2/12) + (4/12) = 7/12
2) q = 2 --- возрастающая последовательность
b1 = 21 / (1+2+4) = 3
b2 = 3*2 = 6
b3 = 6*2 = 12 их сумма = 21
(1/12) + (1/6) + (1/3) = (1/12) + (2/12) + (4/12) = 7/12
ответ: Подпишитесь на мой канал в ютубе
Объяснение:
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.