(x+2a)/(x-6) = a+3. ОДЗ. x не=6. (x+2a) = (a+3)*(x-6); <=> x+ 2a = ax -6a + 3x - 18, <=> 2a+6a+18 = 3x-x + ax, <=> 8a+18 = 2x+ax, <=> 8a+18 = x*(a+2), 1. a=-2, тогда имеем 8*(-2)+18 = x*0, <=> 2=0, это ложное равенство, которое невозможно в принципе. Это означает, что в 1. решений нет. 2. a не= -2, тогда имеем. x=(8a+18)/(a+2). Единственное решение. НО нужно проверить решение на область допустимых значений (ОДЗ). (8a+18)/(a+2) не= 6, <=> (8a+18) не=6*(a+2), <=> 8a + 18 не= 6a+12; <=> 8a-6a не=12 - 18, <=> 2a не=-6, <=> a не= -6/2 = -3. a не=-3. 3. При a = -3, имеем x=6, которое не входит в ОДЗ и поэтому при а=-3 решений нет. ответ. При а=-2, или а=-3 решений нет; при a<-3 или (-3)<a<-2 или a>(-2), единственное решение x=(8a+18)/(a+2).
ОДЗ. x не=6.
(x+2a) = (a+3)*(x-6); <=> x+ 2a = ax -6a + 3x - 18, <=>
2a+6a+18 = 3x-x + ax, <=> 8a+18 = 2x+ax, <=> 8a+18 = x*(a+2),
1. a=-2, тогда имеем 8*(-2)+18 = x*0, <=> 2=0, это ложное равенство, которое невозможно в принципе. Это означает, что в 1. решений нет.
2. a не= -2, тогда имеем.
x=(8a+18)/(a+2). Единственное решение. НО нужно проверить решение на область допустимых значений (ОДЗ).
(8a+18)/(a+2) не= 6, <=> (8a+18) не=6*(a+2), <=>
8a + 18 не= 6a+12; <=> 8a-6a не=12 - 18, <=> 2a не=-6, <=>
a не= -6/2 = -3.
a не=-3.
3. При a = -3, имеем x=6, которое не входит в ОДЗ и поэтому при а=-3 решений нет.
ответ. При а=-2, или а=-3 решений нет;
при a<-3 или (-3)<a<-2 или a>(-2), единственное решение
x=(8a+18)/(a+2).
а)155=155*π/180=31π/36
b)75=75π/180=5π/12
c)185=185π/180=37π/36
2
0,3334≈19гр
0,4431≈25гр
3
y`=12/(2√x)=6/√x
y`=cosx/(4√x)-√xsinx/2
4
y=2x³-x²-x
D(y)∈(-∞;∞)
y(-x)=-2x³-x²+x ни четная,ни нечетная
(0;0);(1;0);(-1/2;0) точки пересечения с осями
y`=6x²-2x-1=0
D=4+24=28
x1=(2-2√7)/12=1/6-√7/6≈-0,3
x2=1/6+√7/6≈0,6
+ _ +
(1/6-√7/6)(1/6+√7/6)
возр max убыв min возр
ymax≈0,2
ymin≈-0,5
y``=12x-2=0
x=1/6 y=-5/27≈-0,2
(1/6;-5/27) точка перегиба