1) Является ли у функцией х, если у - это число десятых в десятичной записи числа х?
У некоторых чисел существует 2 формы десятичной записи: с 0 и с 9 в периоде.
Например, для числа 1 существуют 2 формы: и . В первом случае число десятых равно девяти, а во втором - нулю. То есть существует значение переменной , которому соответствуют несколько значений .
Значит, у не является функцией х.
2) Является ли x функцией y, если у - это число десятых в десятичной записи числа х?
Рассмотрим . Но число десятых у чисел и равно нулю. То есть существует значение переменной , которому соответствуют несколько значений (например, ).
y=x^2-3x+2
1) Находим точки пересечения графика функции с осью Ох:
х^2-3x+2=0
x1=1, x2=2
(1;0) и (2;0) - искомые точки
2) Находим уравнение касательной к графику функции в точке х=1
y`(x)=(x^2-3x+2)`=2x-3
y`(1)=2*1-3=-1 k1=-1
y(1)=1^2-3*1+2=1-3+2=0
y=0+(-1)(x-1)=-x+1 -уравнение касательной в точке х=1
3) Находим уравнение касательной к графику функции в точке х=2
y`(2)=2*2-3=4-3=1 k2=1
y(2)=2^2-3*2+2=4-6+2=0
y=0+1(x-2)=x-2 -уравнение касательной в точке х=2
4) Коэффициент угла наклона первой касательной k1=-1, а второй касательной k2=1,
следовательно, касательные взаимно перпендикулярны,
т.е.угол между ними равен 90 градусов.
1) не является; 2) не является
Объяснение:
1) Является ли у функцией х, если у - это число десятых в десятичной записи числа х?
У некоторых чисел существует 2 формы десятичной записи: с 0 и с 9 в периоде.
Например, для числа 1 существуют 2 формы: и . В первом случае число десятых равно девяти, а во втором - нулю. То есть существует значение переменной , которому соответствуют несколько значений .
Значит, у не является функцией х.
2) Является ли x функцией y, если у - это число десятых в десятичной записи числа х?
Рассмотрим . Но число десятых у чисел и равно нулю. То есть существует значение переменной , которому соответствуют несколько значений (например, ).
Значит, x не является функцией y.