Пусть количество белых шариков равно Б, черных - Ч. Ясно, что хотя бы одно из этих чисел больше или равно 2, поскольку речь идет о двух одноцветных шариках. При этом минимальное количество шариков, которые нужно вынуть, чтобы получить 2 одноцветных, равно 3 (первые 2 могут быть разноцветными, третий совпадет с одним из первых двух). С другой стороны, чтобы гарантировано получить 2 разноцветных шарика, нужно взять max(Б,Ч) +1 шарик. Значит,
max(Б,Ч)+1=3, max(Б,Ч)=2.
Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.
площадь маленького квадрата равна 36 см², значит, его сторона 6 см², или квадрат 6х6.
разделить большой квадрат на 10 квадратов 6х6 и 2 равных прямоугольника можно таким образом:
6х6 l 6х6 l 6х6 l 6х6 l
6х6 l 6х6 l l l
6х6 l 6х6 l 6х18 l 6х18 l
6х6 l 6х6 l l l
значит, большой квадрат 24х24, два равных прямоугольника 6х18.
площадь прямоугольника равна 6*18=108 см²
max(Б,Ч)+1=3, max(Б,Ч)=2.
Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.