Производную надо скорее знать, чем понимать, то есть с заученными правилами ты без проблем сможешь решить любую задачку на производную. Во вложениях я оставлю некоторые правила дифференцирования и прозводные некоторых элементарных функций.
Но вернемся к нашим баранам. Задача 2.
f=(1+2x)/(1-2x). По правилу производной от частного:
t^4+(t-4)^4=626,
t^4+(t^2-8t+16)^2=626,
t^4+t^4-8t^3+16t^2-8t^3+64t^2-128t+ 16t^2-128t+256=626,
2t^4-16t^3+96t^2-256t+256=626,
Делим на 2 обе части:
t^4-8t^3+48t^2-128t+128=313,
t^4-8t^3+48t^2-128t-185=0,
t^4+t^3-9t^3-9t^2+57t^2+57t-185t-185 =0, t^3(t+1)-9t^2(t+1)+57t(t+1)-185(t+1)=0
(t+1)(t^3-9t^2+57t-185)=0,
(t+1)(t^3-5t^2-4t^2+20t+37t-185)=0,
(t+1)(t^2(t-5)-4t(t-5)+37(t-5))=0,
(t+1)(t-5)(t^2-4t+37)=0,
Найдем корни уравнения
t^2-4t+37=0, t=(4+-√(16-4*37))/2,
16-4*37<0, поэтому вещественных корней нет, тогда получаем
t+1=0, t-5=0, t=-1, t=5,
3x+2=-1, 3x=-3, x=-1
3x+2=5, 3x=3, x=1
ответ: x=-1, x=1.
Производную надо скорее знать, чем понимать, то есть с заученными правилами ты без проблем сможешь решить любую задачку на производную. Во вложениях я оставлю некоторые правила дифференцирования и прозводные некоторых элементарных функций.
Но вернемся к нашим баранам. Задача 2.
f=(1+2x)/(1-2x). По правилу производной от частного:
f'=((1+2x)' * (1-2x) - (1-2x)' * (1+2x)) / (1-2x)^2 =
=(2*(1-2x) - (-2)*(1+2x)) / (1-2x)^2 =
= (2-4x+2+4x) / (1-2x)^2 = 4 / (1-2x)^2
Итого f'(0)=4/(1-0)^2 = 4.
Задача 4.
f=ln(sqrt(x^2+1))
По свойству производной от логарифма:
f' = (sqrt(x^2+1))' / sqrt(x^2+1)
По свойству производной от корня (рассмотрим только числитель):
g' = (sqrt(x^2+1))' = ((x^2+1)^(1/2))' = (1/2) * (1/sqrt(x^2+1)) * (x^2+1)'
Ну и оставшаяся производная равна
h' = (x^2+1)' = 2x
Итак, собираем все вместе:
f' = g'/sqrt(x^2+1) = h'/(2*(x^2+1) = x/(x^2+1)
Фух, теперь ищем желанное f'(1):
f'(1)=1/(1+1)=1/2
Ну вот вроде и все, если будут вопросы - пиши, попытаюсь ответить.