Объяснение: Чтобы найти функцию, обратную данной функции y=f(x), надо: 1) В формулу функции вместо y подставить x, вместо x — y, получим x=f(y). 2) Из полученного выражения выразить у через х.
1) а)Если взять функцию y=x⁴, то она не является обратной, поскольку значение функции имеет несколько значений аргумента, например y=16, при x=2; x=-2.
Однако, если рассматривать данную функцию только на множестве положительных чисел, она будет обратимой:
y=x⁴;
x=y⁴; ⇒ y=x¹⁾⁴ (х в степени 1/4) -обратная функция
2) Найти область значений функции f(x)= √x²+6x-1/ x²
Функция имеет смысл, если х≠0.
Пусть выражение √(x²+6*x-1)/x² =а, тогда √(x²+6*x-1) =ах²
Если а=0, то √(x²+6*x-1)=0 ⇒ х²+6х-1=0, дискриминант D= 36+4=40 ⇒ x₁₂= -3±√10. Уравнение имеет корни, значит а=0 годится., это наименьшее значение f(x).
Если а≠0, то x²+6*x-1 =а²х⁴ ⇒ x²+6*x-1 >0 , т.е. на промежутке (-∞;-3-√10)∪(-3+√10) функция f(x)>0 ⇒ область значений Е(f)= (0;+∞)
Объяснение: Чтобы найти функцию, обратную данной функции y=f(x), надо: 1) В формулу функции вместо y подставить x, вместо x — y, получим x=f(y). 2) Из полученного выражения выразить у через х.
1) а)Если взять функцию y=x⁴, то она не является обратной, поскольку значение функции имеет несколько значений аргумента, например y=16, при x=2; x=-2.
Однако, если рассматривать данную функцию только на множестве положительных чисел, она будет обратимой:
y=x⁴;
x=y⁴; ⇒ y=x¹⁾⁴ (х в степени 1/4) -обратная функция
б) у= (5+х)/5 ⇒ х= (5+у)/5 ⇒ 5х= 5+у ⇒ у= 5х - 5 обратная функция.
2) Найти область значений функции f(x)= √x²+6x-1/ x²
Функция имеет смысл, если х≠0.
Пусть выражение √(x²+6*x-1)/x² =а, тогда √(x²+6*x-1) =ах²
Если а=0, то √(x²+6*x-1)=0 ⇒ х²+6х-1=0, дискриминант D= 36+4=40 ⇒ x₁₂= -3±√10. Уравнение имеет корни, значит а=0 годится., это наименьшее значение f(x).
Если а≠0, то x²+6*x-1 =а²х⁴ ⇒ x²+6*x-1 >0 , т.е. на промежутке (-∞;-3-√10)∪(-3+√10) функция f(x)>0 ⇒ область значений Е(f)= (0;+∞)
До единиц, значит до целых.
Округляем если следующая 5,6,7,8,9 то + 1 к предыдущему; если 0,1,2,3,4 то ничего не добавляем.
Абсолютная погрешность приближенного числа это модуль разности данного числа и его приближенного значения.
1) 0.8
0,8=~~ 1 округлённое до единиц
|1-0,8|=0,2 абсолютная погрешность
2) 7.6
7,6=~~ 8 округлённое до единиц
|8-7,6|=0,4 абсолютная погрешность
3) 19.3
19,3=~~19 округлённое до единиц
|19-19,3|=|-0,3|=0,3 абсолютная погрешность
4) 563.58
563,58=~~564 округлённое до единиц
|564-563,58| = 0,42 абсолютная погрешность