Решение: Пусть x - скорость первого автомобиля. Тогда - x-10 - скорость второго автомобиля. Зная, что первый автомобиль на 1 час проехал 300 км быстрей чем второй, составим и решим уравнение: (300/x-10)-(300/x)=1 (300x-300x+3000)/(x^2-10x)=1 3000/(x^2-10x)=1 x^2-10x=3000 x^2-10x-3000=0 D=b^2-4ac D=12100>0-2 корня. x=(-b+√D)/2a x=(10+110)/2 x=120/2 x=60 Второй корень я рассматривать не стану, т.к. он отрицателен, что не подходит по смыслу задачи. Скорость второго автомобиля равна 60 -10=50 км/ч ответ:Скорость первого автомобиля равна 60 км/ч, а скорость второго автомобиля равна 50 км/ч.
sin2x - (1-sin²x) =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.
2) ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0 * * *cos2x = ± 1 ≠0→ ОДЗ * * *
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .
3) ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.
4) ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ; * * * α = 3x * * *
cos3x = 2cos²3x ;
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.
Пусть x - скорость первого автомобиля.
Тогда - x-10 - скорость второго автомобиля.
Зная, что первый автомобиль на 1 час проехал 300 км быстрей чем второй, составим и решим уравнение:
(300/x-10)-(300/x)=1
(300x-300x+3000)/(x^2-10x)=1
3000/(x^2-10x)=1
x^2-10x=3000
x^2-10x-3000=0
D=b^2-4ac
D=12100>0-2 корня.
x=(-b+√D)/2a
x=(10+110)/2
x=120/2
x=60
Второй корень я рассматривать не стану, т.к. он отрицателен, что не подходит по смыслу задачи.
Скорость второго автомобиля равна 60 -10=50 км/ч
ответ:Скорость первого автомобиля равна 60 км/ч, а скорость второго автомобиля равна 50 км/ч.