выразим из каждого уравнения х, и приравняем полученное.
х=-2у-4 (1)
х=-7у+1 (2)
-2у-4=-7у+1⇒5у=5⇒у=5/5;у=1; подставим у=1 в любое из выражений (1)или (2) для определения х, получим х=-2*1-4=-6. Окончательно, найдена точка пересечения (-6;1)
Проверка. проверим решение для первого уравнения. подставив полученную точку, -6+2*1+4=0;0=0; и для второго исходного уравнения -6+7*1-1=0; 0=0.
Задание выполнено верно.
ответ координаты точки пересечения прямых
х=-6;у=1
РS : можно было из первых двух уравнений сначала выразить у, решить относительно х уравнение и найти все ту же точку (-6;1), но более рациональнее первое решение.
Можно было решить и третьим . Графически. Но, как правило, проще здесь первым .
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
выразим из каждого уравнения х, и приравняем полученное.
х=-2у-4 (1)
х=-7у+1 (2)
-2у-4=-7у+1⇒5у=5⇒у=5/5;у=1; подставим у=1 в любое из выражений (1)или (2) для определения х, получим х=-2*1-4=-6. Окончательно, найдена точка пересечения (-6;1)
Проверка. проверим решение для первого уравнения. подставив полученную точку, -6+2*1+4=0;0=0; и для второго исходного уравнения -6+7*1-1=0; 0=0.
Задание выполнено верно.
ответ координаты точки пересечения прямых
х=-6;у=1
РS : можно было из первых двух уравнений сначала выразить у, решить относительно х уравнение и найти все ту же точку (-6;1), но более рациональнее первое решение.
Можно было решить и третьим . Графически. Но, как правило, проще здесь первым .
Удачи.