Получили 2 точки возможного экстремума. Теперь выбираем числа по обе стороны от данных точек, подставляем в производную и смотрим на её знак:
В точке -1 производная больше нуля, поэтому функция возрастает;
В точке 0.5 производная меньше нуля, а значит функция, убывает;
В точке 2 производная больше нуля, значит функция возрастает.
В итоге получаем, что до точки 0 функция росла, между 0 и 1 – убывала, а от точки 1 – опять росла, поэтому точка 0 – максимум функции, а точка 1 – её минимум.
Объяснение: Кількість команд які брали участь у турнірі позначемо х.
Перша команда тоді зіграла (х-1) кількість матчів;
Друга команда зіграла (х-2) кількість матчів;
Отже маєм арифметичну прогресію, де а₁=(х-1), а₂=(х-2),
а₃=(х-3), аₓ₋₁=1;
Різниця арифметичної прогресії d=a₂ - a₁ =(x-2) - (x-1) =
= x-2- x+1 = -1;
Сума членів цієї арифметичної прогресії і буде кількість зіграних
матчів яка рівна 36.
Отже маєм рівність: Sₓ₋₁ = ((2×(x-1) -1×(x-2))/2)×(x-1) = 36;
((2x-2-x+2)/2)= 36;
x×(x-1) = 72;
x²-x-72=0;
√D= √(b²-4ac) = √((-1)²-4×(-72)) = √(1+288)=√289=17;
x₁=(-b+√D)/2a = (-(-1)+17)/2 = (1+17)/2 = 18/2 =9;
x₂=(-b-√D)/2a= (-(-1)-17)/2 = (1-17)/2 = -16/2 = -8;
x₂= -8, - не може бути розв"язком бо є від"ємним числом.
Отже відповідь х₁=9;
Відповідь: 9 команд брало участь у турнірі.
Дана функция:
Найдём её производную:
Приравняем её к нулю:
Получили 2 точки возможного экстремума. Теперь выбираем числа по обе стороны от данных точек, подставляем в производную и смотрим на её знак:
В точке -1 производная больше нуля, поэтому функция возрастает;
В точке 0.5 производная меньше нуля, а значит функция, убывает;
В точке 2 производная больше нуля, значит функция возрастает.
В итоге получаем, что до точки 0 функция росла, между 0 и 1 – убывала, а от точки 1 – опять росла, поэтому точка 0 – максимум функции, а точка 1 – её минимум.