Давай сначала попробуем понять, что вообще это такое
Функция - это, в первую очередь, зависимость одной переменной от другой.
Таким образом, в каждой функции есть зависимая и независимая переменная (пускай она, как и в этом случае, скрыта, но в этом случае ее видно на графике, когда он будет построен). Зависимая переменная часто обозначается буквой "у", а независимая - "х".
Перед нами - обычная линейная функция, пускай она и задана слегка непривычно.
Справка:
Линейная функция - функция, график которой - прямая линия.
Это чудо имеет особый вид записи - y=kx+b, и каждый из коэффициентов (так называются переменные k и b) указывают на что-то свое, так уж получилось. k в этой записи означает наклон графика. Если в функции положительный k - график возрастает (то есть, чем больше х, тем больше у), если отрицательный - опадает (чем меньше х, тем больше значение у).
Перед дальнейшим хочу отметить, что любая точка на координатной плоскости задается 2-мя значениями - х и у, именно в таком порядке. у - "высота" этой точки, а х - "расстояние" от точки начала координат.
С b в этом несколько проще - он означает, в какой точке график пересечет ось y, какая у этой точки будет ордината (значение y).
В нашем случае y=-3 х и y=2 - в функции, казалось-бы. отсутствует переменная х. Но, как бы ни так, давай попробуем все-таки построить график.
И тут мы видим, что х никуда не делся, просто наклона у функции нет. А. значит, коэффициент k стал равен 0. Таким образом, функция "в реальности" имеет вид "y=0x-3", и значение х тут не влияет на у (так как при умножении на 0 произведение всегда равно 0), и его решили убрать.
См фото, но и в объяснение загляни. это полезно
Объяснение:
Давай сначала попробуем понять, что вообще это такое
Функция - это, в первую очередь, зависимость одной переменной от другой.
Таким образом, в каждой функции есть зависимая и независимая переменная (пускай она, как и в этом случае, скрыта, но в этом случае ее видно на графике, когда он будет построен). Зависимая переменная часто обозначается буквой "у", а независимая - "х".
Перед нами - обычная линейная функция, пускай она и задана слегка непривычно.
Справка:
Линейная функция - функция, график которой - прямая линия.
Это чудо имеет особый вид записи - y=kx+b, и каждый из коэффициентов (так называются переменные k и b) указывают на что-то свое, так уж получилось. k в этой записи означает наклон графика. Если в функции положительный k - график возрастает (то есть, чем больше х, тем больше у), если отрицательный - опадает (чем меньше х, тем больше значение у).
Перед дальнейшим хочу отметить, что любая точка на координатной плоскости задается 2-мя значениями - х и у, именно в таком порядке. у - "высота" этой точки, а х - "расстояние" от точки начала координат.
С b в этом несколько проще - он означает, в какой точке график пересечет ось y, какая у этой точки будет ордината (значение y).
В нашем случае y=-3 х и y=2 - в функции, казалось-бы. отсутствует переменная х. Но, как бы ни так, давай попробуем все-таки построить график.
И тут мы видим, что х никуда не делся, просто наклона у функции нет. А. значит, коэффициент k стал равен 0. Таким образом, функция "в реальности" имеет вид "y=0x-3", и значение х тут не влияет на у (так как при умножении на 0 произведение всегда равно 0), и его решили убрать.
Второе - по аналогии
Вариант Б1:
1Дано:
АО=DO
<1=<2
Док-ть: тр. АОВ=тр. DOC
Доказательство:
1) <ВАО+<1 = 180° (смежные)
<CDO+<2 = 180° (смежные)
<ВАО = 180 - <1
<CDO = 180 - <2
Т.к. <1 и <2 равны (по усл.), то:
<BAO=<CDO
2) Рассмотрим тр-ки AOB и DOC:
<BAO=<CDO (доказано)
<BOA = <COD (вертик.)
AO=DO (по усл.)
Значит,
тр AOB = тр DOC
Доказано.
2Дано:
ABCD — четырехугольник
AD=BC, AB = CD
Доказать: <А = <С
Доказательство:
1) Доп. построение — диагональ BD
2) Рассм. тр-ки ABD и CBD:
AD = BC, AB = CD (по усл.)
BD — общая.
Значит,
тр ABD = тр CBD
3) В равных треугольниках все соответствующие элементы равны.
Значит,
<A = <C
<A = <CДоказано.
3Дано:
ABCD — четырёхугольник
BD, AC — диагонали.
тр ABC = тр CDA
Доказать: тр ABD = тр CDB
Доказательство:
1) Т. к. тр-ки ABC и CDA равны, то:
AD = BC
AB = CD
2) Рассмотрим тр-ки ABD и CDB:
AD = BC, AB = CD (док.)
BD — общая
Значит,
тр ABD = тр CDB
Доказано.