Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок делая первый прыжок из начало координат. сколько существует различных точек на координатной прямой в которых кузнечик может оказаться совершив ровно 97 прыжков
1) D=9-4*4*(-2)=25
x=(3+-5)/4
x1=2
x2=-0.5
2(x+0.5)(x-2)=(x+1)(x-2)
2) D=64-4*3*(-3)=100
x=(-8+-10)/6
x1=1/3
x2=-3
3(x-1/3)(x+3)=(x-1)(x+3)
3)D=4-4*3*(-1)=16
x=(-2+-4)/6
x1=1/3
x2=-1
3(x-1/3)(x+1)=(x-1)(x+1)
4)D=25-4*2*(-3)=1
x=(-5+-1)/4
x1=-1
x2=-3/2
2(x+3/2)(x+1)=(x+3)(x+1)
5) (2-10a)(2+10a)
6) (5xy-4)(5xy+4)
7) D=1-4*1*(-30)=121
x=(1+-11)/2
x1=6
x2=-5
(x-6)(x+5)
8)D=1-4*1*(-42)=169
x=(-1+-13)/2
x1=6
x2=-7
(x-6)(x+7)
D-это дискриминант
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)