Логарифмическая функция с основанием 5>1 возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
3x-2>25 3x>27 x>9 ответ. (9; +∞) 2)
Логарифмическая функция с основанием 0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
4х+2>8 4x>8-2 4x>6 x>1,5 ответ. (1,5; +∞) 3)
Логарифмическая функция с основанием 0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
ответ. [-1,5; 0,5) 4)Находим ОДЗ:
Логарифмическая функция с основанием 3>1- возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
Система не имеет решений \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -----------------------------(-10)------------(3)------------ //////////////////////// множества не пересекаются
Логарифмическая функция с основанием 5>1 возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
3x-2>25
3x>27
x>9
ответ. (9; +∞)
2)
Логарифмическая функция с основанием 0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
4х+2>8
4x>8-2
4x>6
x>1,5
ответ. (1,5; +∞)
3)
Логарифмическая функция с основанием 0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
ответ. [-1,5; 0,5)
4)Находим ОДЗ:
Логарифмическая функция с основанием 3>1- возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
Система не имеет решений
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-----------------------------(-10)------------(3)------------
////////////////////////
множества не пересекаются
S = b1/(1 - q)
У нас b1 = 8, q = 0,5, S = 8/(1 - 0,5) = 16
2) Арифметическая прогрессия
a(n) = a1 + d*(n - 1)
У нас a1 = 3, d = 4, n = 10, a(10) = 3 + 4*9 = 3 + 36 = 39
3) b1 = 9, q = -1/3, S = 9/(1 - 1/3) = 9/(2/3) = 9*3/2 = 13,5
4) Сумма арифметической прогрессии
S = (a1 + a(n))*n/2
a1 = 2, n = 102-2+1 = 101, a(101) = 102
S = (2 + 102)*101/2 = 52*101 = 5252
5) a1 = -3, d = -3, n = 25, a(25) = -3 - 3*24 = -3 - 72 = -75
6) a1 = 10, d = -2, n = 10, a(10) = 10 - 2*9 = 10 - 18 = -8
S(10) = (10 - 8)*10/2 = 2*10/2 = 10