Арифметика — раздел математики, изучающий числа (все, кроме комплексных и иррациональных) и действия над ними (+, -*, /)
Алгебра — расширенная арифметика. Она включает в себя не только работу с числами, но и над различными множествами, не обязательно числовыми. Алгебра занимается решением уравнений и их систем, изучением симметрии (теория групп) . Так же, может слышали, есть т. н. булева алгебра — алгебра с логичискими операциями (и, или, не, исключающее или) (1 and 0 = 0) и т. д. В теории групп, структурные контсанты группы образовывают её алгебру — т. е. показывают как группа замыкается (точнее её генераторы) . В общем, алгебра = арифметика, только с более сложными объектами.
1)Функция определена при тех х, при которых не обращается в 0 знаменатель. Решая уравнение arcsin(x²-3)=0, находим x²-3=0. Решая уравнение x²-3=0, находим x=+-√3. С другой стороны, должно выполняться неравенство -1≤x²-3≤1, или 2≤x²≤4, откуда √2≤x≤2. либо -2≤x≤-√2. Окончательно находим, что область определения состоит из четырёх интервалов: -2≤x<-√3, -√3<x≤-√2, √2≤x<√3,√3<x≤2 2. Так как числитель дроби есть 1, то в нуль функция не обращается. А так как знаменатель дроби принимает любые значения, то область значений функции есть два интервала: -∞<G(x)<0 и 0<G(x)<+∞ То есть функция принимает любые значения, кроме 0.
Арифметика — раздел математики, изучающий числа (все, кроме комплексных и иррациональных) и действия над ними (+, -*, /)
Алгебра — расширенная арифметика. Она включает в себя не только работу с числами, но и над различными множествами, не обязательно числовыми. Алгебра занимается решением уравнений и их систем, изучением симметрии (теория групп) . Так же, может слышали, есть т. н. булева алгебра — алгебра с логичискими операциями (и, или, не, исключающее или) (1 and 0 = 0) и т. д. В теории групп, структурные контсанты группы образовывают её алгебру — т. е. показывают как группа замыкается (точнее её генераторы) . В общем, алгебра = арифметика, только с более сложными объектами.
Объяснение:
-2≤x<-√3, -√3<x≤-√2, √2≤x<√3,√3<x≤2
2. Так как числитель дроби есть 1, то в нуль функция не обращается. А так как знаменатель дроби принимает любые значения, то область значений функции есть два интервала: -∞<G(x)<0 и 0<G(x)<+∞ То есть функция принимает любые значения, кроме 0.