Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
- 3 и 4.
Объяснение:
Дано.
- 12 - произведение двух чисел;
1 - сумма двух чисел.
Найти: эти числа.
Решение.
1) Обозначим числа: a и b.
Тогда можно составить систему уравнений:
a · b = - 12 уравнение (1)
a + b = 1 уравнение (2)
2) Из уравнения (2) выразим а:
а = 1 - b
и подставим в уравнение (1):
a · b = - 12
3) Находим одно из чисел:
(1 - b) · b = - 12
b - b² = - 12
- b² + b + 12 = 0
b² - b - 12 = 0
b₁,₂ = 1/2 ± √(1/4 +12) = 1/2 ± √49/4 = 1/2 ± 7/2
b₁ = 1/2 + 7/2 = 8/2 = 4
b₂ = 1/2 - 7/2 = - 6/2 = - 3
4) Из уравнения (1) находим другое число:
а₁ · 4 = - 12
а₁ = (-12) : 4 = - 3
а₂ · (-3) = - 12
а₂ = (-12) : (-3) = 4
В обоих случаях получается одна и та же пара чисел: (-3) и 4.
ответ: - 3 и 4.