В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
NurBanu1
NurBanu1
05.04.2021 16:17 •  Алгебра

Lim n- бесконечность (n^3-(n-1)^3)/(2n^2-n+1)

Показать ответ
Ответ:
mixtalalai2017
mixtalalai2017
17.09.2020 13:20
Поехали!
Сначала применяем в числителе формулу разности кубов:
lim n->oo ((n-(n-1))*(n^2+n*(n-1)+(n-1)^2))/(2*n^2-n+1)
Продолжаем работать с числителем:
lim n->oo (2*n^2-n+(n-1)^2)/(2*n^2-n+1)
Применяем формулу квадрат разности для (n-1)^2 и преобразуем:
lim n->oo (3*n^2-3*n+1)/(2*n^2-n+1)
Выносим n^2 в числителе и знаменателе и сокращаем его. Остается:
lim n->oo (3-3/n+1/n^2)/(2-1/n+1/n^2)
Все дроби в знаменателе у которых стоит n, стремятся к нулю.
В итоге получаем ответ:
3/2 или 1,5
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота