1 Действие: Найдем расстояние по течению и против течения. За х возьмем расстояние по течению, тогда( х - 32) расстояние по течению и получаем: х + ( х - 32) =88 Найдем х: х + ( х - 32) =88 2х=120 х=60км А тогда против он км 2 действие: получаем что за 2 часа против течения он проходит 28 км, а за 3 часа по течению 60 км, и следовательно находим скорость : Скорость против течения получается 14 км/ч, а скорость по течению 20 км/ч (Делим расстояние на время) обозначим скорость катера х, а скорость течения у.Составляем систему: х+у=20 (по течению) х-у=14 (против течения) получаем: 2х=34 х=17км/ч - скорость катера А тогда скорость скорость течения 20-х=у у=3 км/ч ответ: скорость катера 17 км/ч скорость течения 3 км/ч
ответ:
\frac{13k-4}{3-13k}+ \frac{x}{3-13k}=1
\frac{13k-4+x}{3-13k}= \frac{3-13k}{3-13k}
\frac{13k-4+x}{3-13k}- \frac{3-13k}{3-13k} =0
\frac{13k-4+x-(3-13k)}{3-13k}=0
\frac{13k-4+x-3+13k}{3-13k}=0
\frac{26k-7+x}{3-13k}=0
\left \{ {{26k-7+x=0} \atop {3-13k \neq 0}} \right. ; \left \{ {{x=-26k+7} \atop {k \neq \frac{3}{13} }} \right. ; \left \{ {{x=7-26k} \atop {k \neq \frac{3}{13} }} \right.
ответ: если k \neq \frac{3}{13} , то x=7-26k
объяснение:
обозначим скорость катера х, а скорость течения у.Составляем систему: х+у=20 (по течению) х-у=14 (против течения)
получаем: 2х=34 х=17км/ч - скорость катера А тогда скорость скорость течения 20-х=у у=3 км/ч
ответ: скорость катера 17 км/ч скорость течения 3 км/ч