Линейное уровнение
Составьте уравнение вида y = kx by=kx b, график которого проходит через данные точки A (2;-1)A(2;−1) и B (-3;4)B(−3;4) \begin{cases}-1=k\cdot 2 b;\\4=k(-3) b.\end{cases}{ −1=k⋅2 b; 4=k(−3) b. \cdot \dbinom{-1}{1}⋅( 1 −1 ) ; \begin{cases}-2k-b=1;\\-3k b=4.\end{cases}{ −2k−b=1; −3k b=4. ; k=—1k=—1. Подставляем в уравнение 2\cdot (-1) b=-12⋅(−1) b=−1 ответ:
Периметр — сумма длин всех сторон.
b) P = m + n + (m - x) + y + x + (n - y) = m + n + m - x + y + x + n - y = 2m + 2n
c) P = m + n + ((m + b) - x) + y + x + (n - a - y) + b + a = m + n + m + b - x + y + x + n - a - y + b + a = 2m + 2n + 2b
d) P = n + (m - y) + x + y + x + n + (m - b) + a + b + a = n + m - y + x + y + x + n + m - b + a + b + a = 2n + 2m + 2x + 2a
Площадь.
b) из площади общей фигуры вычтем площадь нижнего "прямоугольника". <приложение3>
S = (m × n) - (x × y) = mn - xy
с) разбиваем на три прямоугольника, площадь которых находится произведением смежных сторон. <приложение1>
S = (m × a) + ((n - a - y) × (m + b)) + (y × (m + b - x)) = am + nm + bn - am - ab - my - by + my + by - xy = nm + bn - ab - xy
d) из площади общей фигуры вычтем площади "вырезов". <приложение2>
S = (m × n) - (a × b) - (x × y) = mn - ab - xy
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно