A,b,c могут считаться базисом, если определитель из столбцов их координат не равен 0. 4 3 -1det( 5 0 4) = -3*(5*2-4*2) - 1*(4*4-(-1)*5) = -27 - не равен 0, значит вектора 2 1 2a,b,c образуют базис, что и требовалось показать.Вектор d представим в виде:d = p*a + q*b + r*cТак как координаты d заданы, получим систему уравнений для коэффициентов p,q,r:4p + 3q - r = 55p + 4r = 72p + q + 2r = 8 q = 8-2p-2r тогда получим систему 2p+7r=19 5p+4r=7Решив, получим: p = -1, r = 3 и тогда q = 4Значит разложение выглядит так:d = -a + 4b + 3c.
1) 9x^3+18x^2-x-2=0
9x²(x + 2) - (x + 2) = 0
(x + 2)(9x² - 1) = 0
x + 2 = 0, x = - 2
9x² - 1 = 0
9x² = 1
x² = 1/9
x₁ = - 1/3
x₂ = 1/3
ответ: x₁ = - 1/3; x₂ = 1/3
2) (х² - 2х)² - 2(х² - 2х) - 3=0
Пусть x² - 2x = t
t² - 2t - 3 = 0
t₁ = - 1
t₂ = 3
a) x² - 2x = - 1
x² - 2x + 1 = 0
(x - 1)² = 0
x₁,₂ = 1
b) x² - 2x = 3
x² - 2x - 3 = 0
x₃ = - 1
x₄ = 3
ответ: x₁,₂ = 1 ; x₃ = - 1 ; x₄ = 3
3) (x^2+x-5)(x^2+x+1) = -9
Пусть x² + x = z
(z - 5)(z + 1) = - 9
z² - 4z - 5 + 9 = 0
z² - 4z + 4 = 0
(z - 2)² = 0
z₁,₂ = 2
x² + x = 2
x² + x - 2 = 0
x₁ = - 2
x₂ = 1
ответ: x₁ = - 2 ; x₂ = 1