1. х - скорость течения реки. По течению со скоростью (18+х)км/час 80 км за время: 80/(18+х) час Против течения те же 80 км со скоростью (18-х)км/час за время: 80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9; 80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час. (Отрицательную скорость течения х₂ отметаем) 2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4 б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3 3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2
По течению со скоростью (18+х)км/час 80 км за время:
80/(18+х) час
Против течения те же 80 км со скоростью (18-х)км/час за время:
80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9;
80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час.
(Отрицательную скорость течения х₂ отметаем)
2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4
б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3
3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2
---
sin( π*( (5/6)*6x +(5/6)*1) ) =cos( π*((1/3)*3x+(1/3)*2) ) ;
sin( π(5x +5/6)) =cos( π(x+ 2/3) ) ;
sin( π(5x +5/6)) =sin( π/2- π(x+ 2/3) ) ;
sin( π(5x +5/6)) = sin( π(1/2- x- 2/3) ) ;
sin( π(5x +5/6)) = sin(- π(x+1/6) ) ;
sin( π(5x +5/6)) + sin( π(x +1/6) ) =0 ;
2sin( π(3x +1/2))*cos( π(2x+1/3)) =0 ;
[ sin π(3x +1/2)) =0 ; cos( π(2x+1/3) )=0 .
а)
π(3x +1/2) =πn ,n∈Z.
3x +1/2 = n ⇒x = -1/6 +n/3 ,если n =1⇒ x =1/6 ∈ (0; 1/2) .
* * * 0< -1/6 +n/3 < 1/2⇔ 1/6<n/3< 1/6+1/2 ⇔1/2<n<2 ⇒n=1* * *
б)
π(2x+1/3) = π/2 +πn ,n∈Z.
2x+1/3 = 1/2 +n ⇒ x =1/12+ n/2,если n =0⇒ x =1/12 ∈ (0; 1/2).
* * * 0< 1/12 +n/2 < 1/2⇔ - 1/12 <n/2< -1/12+1/2 ⇔-1/6<n<5/6 ⇒n=0* * *
сумма корней будет: (1/6 +1/12) =1/4.
ответ : 1/4 .